File size: 7,319 Bytes
29346cd
 
 
 
bb6e4d1
d896850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb6e4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7304f5c
 
bb6e4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
license: apache-2.0
base_model:
- Qwen/Qwen3-0.6B
pipeline_tag: text-generation
tags:
- English
- French
- Portuguese
- German
- Romanian
- Swedish
- Danish
- Bulgarian
- Russian
- Czech
- Greek
- Ukrainian
- Spanish
- Dutch
- Slovak
- Croatian
- Polish
- Lithuanian
- Norwegian Bokmål
- Norwegian Nynorsk
- Persian
- Slovenian
- Gujarati
- Latvian
- Italian
- Occitan
- Nepali
- Marathi
- Belarusian
- Serbian
- Luxembourgish
- Venetian
- Assamese
- Welsh
- Silesian
- Asturian
- Chhattisgarhi
- Awadhi
- Maithili
- Bhojpuri
- Sindhi
- Irish
- Faroese
- Hindi
- Punjabi
- Bengali
- Oriya
- Tajik
- Eastern Yiddish
- Lombard
- Ligurian
- Sicilian
- Friulian
- Sardinian
- Galician
- Catalan
- Icelandic
- Tosk Albanian
- Limburgish
- Dari
- Afrikaans
- Macedonian
- Sinhala
- Urdu
- Magahi
- Bosnian
- Armenian
- Chinese
- Simplified Chinese
- Traditional Chinese
- Cantonese
- Burmese
- Arabic
- Najdi Arabic
- Levantine Arabic
- Egyptian Arabic
- Moroccan Arabic
- Mesopotamian Arabic
- Ta’izzi-Adeni Arabic
- Tunisian Arabic
- Hebrew
- Maltese
- Indonesian
- Malay
- Tagalog
- Cebuano
- Javanese
- Sundanese
- Minangkabau
- Balinese
- Banjar
- Pangasinan
- Iloko
- Waray
- Tamil
- Telugu
- Kannada
- Malayalam
- Turkish
- North Azerbaijani
- Northern Uzbek
- Kazakh
- Bashkir
- Tatar
- Thai
- Lao
- Finnish
- Estonian
- Hungarian
- Vietnamese
- Khmer
- Japanese
- Korean
- Georgian
- Basque
- Haitian
- Papiamento
- Kabuverdianu
- Tok Pisin
- Swahili
---
# Qwen3-0.6B-GGUF-for-24GB-VRAM

This 24GB VRAM-compatible, quantized model, designed for running with llama.cpp on 24GB VRAM, is a fully free software model published for maximum quality performance. You can find the Llama.cpp GitHub Repository at [https://github.com/ggml-org/llama.cpp](https://github.com/ggml-org/llama.cpp) and learn more about GNU Free Software Philosophy at [https://www.gnu.org/philosophy/free-sw.html](https://www.gnu.org/philosophy/free-sw.html). These resources provide the necessary information and tools to ensure that the models run with optimal quality on 24GB VRAM GPU setups.

## Quick start on CPU and GPU

1. Install llama.cpp from https://github.com/ggml-org/llama.cpp

```sh
$ git clone https://github.com/ggml-org/llama.cpp.git
cd llama.cpp
# remove -D option below if you do not gave GPU
cmake -B build -DGGML_CUDA=ON;
cmake --build build --config Release;
cd build;
sudo make install;
```

2. Run it on CPU as:

```sh
llama-server --jinja -m Qwen3-0.6B-Q8_0.gguf
```

2. Or run it on GPU as:

```sh
llama-server --jinja -fa -c 8192 -ngl 999 -v --log-timestamps --host 192.168.1.68 -m Qwen3-0.6B-Q8_0.gguf
```

3. To disable thinking process, just add `/no_think` in the system message.

# Qwen3-0.6B
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>

## Qwen3 Highlights

Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:

- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.

## Model Overview

**Qwen3-0.6B** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 0.6B
- Number of Paramaters (Non-Embedding): 0.44B
- Number of Layers: 28
- Number of Attention Heads (GQA): 16 for Q and 8 for KV
- Context Length: 32,768 

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).

> [!TIP]
> If you encounter significant endless repetitions, please refer to the [Best Practices](#best-practices) section for optimal sampling parameters, and set the ``presence_penalty`` to 1.5.

## Best Practices

To achieve optimal performance, we recommend the following settings:

1. **Sampling Parameters**:
   - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
   - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
   - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.

2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.

3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
   - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
   - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."

4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.

### Citation

If you find our work helpful, feel free to give Qwen a cite.

```
@misc{qwen3,
    title  = {Qwen3},
    url    = {https://qwenlm.github.io/blog/qwen3/},
    author = {Qwen Team},
    month  = {April},
    year   = {2025}
}