|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""openai model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig, layer_type_validation |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
class GptOssConfig(PretrainedConfig): |
|
r""" |
|
This will yield a configuration to that of the BERT |
|
[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture. |
|
|
|
""" |
|
|
|
model_type = "gpt_oss" |
|
base_model_pp_plan = { |
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
} |
|
base_model_tp_plan = { |
|
"layers.*.self_attn.q_proj": "colwise", |
|
"layers.*.self_attn.k_proj": "colwise", |
|
"layers.*.self_attn.v_proj": "colwise", |
|
"layers.*.self_attn.o_proj": "rowwise", |
|
"layers.*.self_attn.sinks": "local_rowwise", |
|
"layers.*.mlp.experts": "gather", |
|
"layers.*.mlp.router": "ep_router", |
|
"layers.*.mlp.experts.gate_up_proj": "grouped_gemm", |
|
"layers.*.mlp.experts.gate_up_proj_bias": "grouped_gemm", |
|
"layers.*.mlp.experts.down_proj": "grouped_gemm", |
|
"layers.*.mlp.experts.down_proj_bias": "grouped_gemm", |
|
} |
|
|
|
def __init__( |
|
self, |
|
num_hidden_layers: int = 36, |
|
num_local_experts: int = 128, |
|
vocab_size: int = 201088, |
|
hidden_size: int = 2880, |
|
intermediate_size: int = 2880, |
|
head_dim: int = 64, |
|
num_attention_heads: int = 64, |
|
num_key_value_heads: int = 8, |
|
sliding_window: int = 128, |
|
rope_theta: float = 150000.0, |
|
tie_word_embeddings=False, |
|
hidden_act: str = "silu", |
|
initializer_range: float = 0.02, |
|
max_position_embeddings=131072, |
|
rms_norm_eps: float = 1e-5, |
|
rope_scaling={ |
|
"rope_type": "yarn", |
|
"factor": 32.0, |
|
"beta_fast": 32.0, |
|
"beta_slow": 1.0, |
|
"truncate": False, |
|
"original_max_position_embeddings": 4096, |
|
}, |
|
attention_dropout: float = 0.0, |
|
num_experts_per_tok=4, |
|
router_aux_loss_coef: float = 0.9, |
|
output_router_logits=False, |
|
use_cache=True, |
|
layer_types=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_local_experts = num_local_experts |
|
self.sliding_window = sliding_window |
|
self.num_experts_per_tok = num_experts_per_tok |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_dropout = attention_dropout |
|
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads |
|
self.layer_types = layer_types |
|
if self.layer_types is None: |
|
self.layer_types = [ |
|
"sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers) |
|
] |
|
layer_type_validation(self.layer_types) |
|
|
|
self.attention_bias = True |
|
self.max_position_embeddings = max_position_embeddings |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.output_router_logits = output_router_logits |
|
self.use_cache = use_cache |
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
rope_config_validation(self) |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
__all__ = ["GptOssConfig"] |
|
|
|
|