Update README.md
Browse files
README.md
CHANGED
@@ -17,12 +17,63 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
17 |
## Quick start
|
18 |
|
19 |
```python
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
-
generator = pipeline("text-generation", model="JacobLinCool/gemma-3n-E2B-transcribe-zh-tw-1", device="cuda")
|
24 |
-
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
-
print(output["generated_text"])
|
26 |
```
|
27 |
|
28 |
## Training procedure
|
|
|
17 |
## Quick start
|
18 |
|
19 |
```python
|
20 |
+
import torch
|
21 |
+
from peft import PeftModel
|
22 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
23 |
+
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
|
26 |
+
processor = AutoProcessor.from_pretrained("google/gemma-3n-E2B-it", device_map="auto")
|
27 |
+
base_model = AutoModelForCausalLM.from_pretrained("google/gemma-3n-E2B-it")
|
28 |
+
model = PeftModel.from_pretrained(
|
29 |
+
base_model, "JacobLinCool/gemma-3n-E2B-transcribe-zh-tw-1"
|
30 |
+
).to(device)
|
31 |
+
|
32 |
+
|
33 |
+
def trascribe(model, processor, audio):
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "system",
|
37 |
+
"content": [
|
38 |
+
{
|
39 |
+
"type": "text",
|
40 |
+
"text": "You are an assistant that transcribes speech accurately.",
|
41 |
+
}
|
42 |
+
],
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"role": "user",
|
46 |
+
"content": [
|
47 |
+
{"type": "audio", "audio": audio},
|
48 |
+
{"type": "text", "text": "Transcribe this audio."},
|
49 |
+
],
|
50 |
+
},
|
51 |
+
]
|
52 |
+
|
53 |
+
input_ids = processor.apply_chat_template(
|
54 |
+
messages,
|
55 |
+
add_generation_prompt=True,
|
56 |
+
tokenize=True,
|
57 |
+
return_dict=True,
|
58 |
+
return_tensors="pt",
|
59 |
+
)
|
60 |
+
input_ids = input_ids.to(device, dtype=model.dtype)
|
61 |
+
|
62 |
+
model.eval()
|
63 |
+
with torch.no_grad():
|
64 |
+
outputs = model.generate(**input_ids, max_new_tokens=128)
|
65 |
+
|
66 |
+
prediction = processor.batch_decode(
|
67 |
+
outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
68 |
+
)[0]
|
69 |
+
prediction = prediction.split("\nmodel\n")[-1].strip()
|
70 |
+
return prediction
|
71 |
+
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
prediction = trascribe(model, processor, "/workspace/audio.mp3")
|
75 |
+
print(prediction)
|
76 |
|
|
|
|
|
|
|
|
|
77 |
```
|
78 |
|
79 |
## Training procedure
|