File size: 2,561 Bytes
edaa0c4 dfefcb3 edaa0c4 dfefcb3 edaa0c4 dfefcb3 edaa0c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-half
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_16_1
type: common_voice_16_1
config: en
split: test
args: en
metrics:
- type: wer
value: 28.434990232255263
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-turbo-half
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7088
- Wer: 28.4350
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 0 | 0 | 8.8155 | 100.0 |
| 0.9071 | 0.1 | 500 | 1.5140 | 64.0547 |
| 0.7138 | 0.2 | 1000 | 1.1375 | 49.9023 |
| 0.5078 | 0.3 | 1500 | 1.0159 | 41.3067 |
| 0.4833 | 0.4 | 2000 | 0.9379 | 34.7081 |
| 0.4164 | 0.5 | 2500 | 0.8927 | 30.9746 |
| 0.517 | 0.6 | 3000 | 0.8473 | 31.0397 |
| 0.33 | 0.7 | 3500 | 0.7714 | 27.1326 |
| 0.364 | 0.8 | 4000 | 0.7508 | 25.6132 |
| 0.3728 | 0.9 | 4500 | 0.7091 | 24.4628 |
| 0.4321 | 1.0 | 5000 | 0.7088 | 28.4350 |
### Framework versions
- Transformers 4.54.0
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.2
|