--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: whisper-large-v3-turbo-half results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: en split: test args: en metrics: - type: wer value: 28.434990232255263 name: Wer --- # whisper-large-v3-turbo-half This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.7088 - Wer: 28.4350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0 | 0 | 8.8155 | 100.0 | | 0.9071 | 0.1 | 500 | 1.5140 | 64.0547 | | 0.7138 | 0.2 | 1000 | 1.1375 | 49.9023 | | 0.5078 | 0.3 | 1500 | 1.0159 | 41.3067 | | 0.4833 | 0.4 | 2000 | 0.9379 | 34.7081 | | 0.4164 | 0.5 | 2500 | 0.8927 | 30.9746 | | 0.517 | 0.6 | 3000 | 0.8473 | 31.0397 | | 0.33 | 0.7 | 3500 | 0.7714 | 27.1326 | | 0.364 | 0.8 | 4000 | 0.7508 | 25.6132 | | 0.3728 | 0.9 | 4500 | 0.7091 | 24.4628 | | 0.4321 | 1.0 | 5000 | 0.7088 | 28.4350 | ### Framework versions - Transformers 4.54.0 - Pytorch 2.8.0.dev20250319+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2