--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: food-recognition results: [] --- # food-recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2610 - Accuracy: 0.9324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5974 | 0.21 | 100 | 0.6096 | 0.8292 | | 0.5911 | 0.43 | 200 | 0.5204 | 0.8476 | | 0.7085 | 0.64 | 300 | 0.4329 | 0.8708 | | 0.5302 | 0.85 | 400 | 0.4843 | 0.8428 | | 0.2436 | 1.07 | 500 | 0.3767 | 0.886 | | 0.2355 | 1.28 | 600 | 0.3344 | 0.8956 | | 0.1497 | 1.49 | 700 | 0.3447 | 0.8932 | | 0.2213 | 1.71 | 800 | 0.3082 | 0.9072 | | 0.2197 | 1.92 | 900 | 0.3169 | 0.902 | | 0.0719 | 2.13 | 1000 | 0.2977 | 0.9136 | | 0.0526 | 2.35 | 1100 | 0.3455 | 0.9084 | | 0.0926 | 2.56 | 1200 | 0.3140 | 0.9208 | | 0.0427 | 2.77 | 1300 | 0.3307 | 0.9128 | | 0.0716 | 2.99 | 1400 | 0.3007 | 0.9204 | | 0.0151 | 3.2 | 1500 | 0.2791 | 0.9292 | | 0.032 | 3.41 | 1600 | 0.2737 | 0.9296 | | 0.0611 | 3.62 | 1700 | 0.2620 | 0.9336 | | 0.0175 | 3.84 | 1800 | 0.2610 | 0.9324 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.1+cpu - Datasets 2.15.0 - Tokenizers 0.15.0