Jaehun commited on
Commit
393a979
·
verified ·
1 Parent(s): 75052c6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -160
README.md CHANGED
@@ -1,13 +1,40 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ## Model Details
13
 
@@ -33,167 +60,30 @@ This is the model card of a 🤗 transformers model that has been pushed on the
33
  - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - NLI
5
+ - entailment
6
+ - zeroshot
7
+ license: cc
8
+ datasets:
9
+ - Jaehun/PrismNLI
10
+ language:
11
+ - en
12
+ base_model:
13
+ - microsoft/deberta-v3-large
14
  ---
15
 
16
+ # PrismNLI-0.4B
17
 
18
+ [Paper](https://arxiv.org/abs/2505.20161) [Project Page](https://nvlabs.github.io/prismatic-synthesis/)
19
 
20
+ PrismNLI-0.4B is a compact yet powerful expert model, purpose-built for natural language inference (NLI) and zero-shot classification.
21
+ **Despite its small size, it delivers state-of-the-art performance on 8 NLI benchmarks**, making it a go-to solution for high-accuracy, low-latency NLI applications.
22
 
23
+ PrismNLI-0.4B is fine-tuned from [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large)
24
+ on our high-quality dataset [PrismNLI](https://huggingface.co/datasets/Jaehun/PrismNLI), curated specifically to improve generalization of the trained model.
25
+ For further details, please refer to our [paper](https://arxiv.org/abs/2505.20161).
26
+
27
+ This version of the model goes beyond the original from our [paper](https://arxiv.org/abs/2505.20161), to produce a single, robust NLI model ready for off-the-shelf deployment.
28
+ The enhancement includes:
29
+ - Instead of starting from scratch, we start from [deberta-v3-large-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0), a checkpoint of
30
+ deberta-v3-lage trained on diverse classification data.
31
+ - Following prior works on entailment models, we reformulate the traditional 3-way NLI classification—`entailment`, `neutral`, and `contradiction`—into a binary setup:
32
+ `entailment` vs. `not-entailment`. This simplification enables the model to act as a **universal classifier**, by asking a single, intuitive question: *Is this hypothesis true, given the premise?*
33
+
34
+
35
+ # Training Data
36
+ The model has been fine-tuned on 515K NLI datapoints from [PrismNLI](https://huggingface.co/datasets/Jaehun/PrismNLI), a synthetic dataset to improve generalization of
37
+ NLI models. The dataset has been generated by [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) via our algorithm, Prismatic Synthesis that scales synthetic data while improving the diversity of generated samples.
38
 
39
  ## Model Details
40
 
 
60
  - **Paper [optional]:** [More Information Needed]
61
  - **Demo [optional]:** [More Information Needed]
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ ## Citation
65
+ If you find this model useful, please consider citing us!
66
 
67
+ ```bibtex
68
+ @misc{prismatic-synthesis,
69
+ title={Prismatic Synthesis: Gradient-based Data Diversification Boosts Generalization in LLM Reasoning},
70
+ author={Jaehun Jung and Seungju Han and Ximing Lu and Skyler Hallinan and David Acuna and Shrimai Prabhumoye and Mostafa Patwary and Mohammad Shoeybi and Bryan Catanzaro and Yejin Choi},
71
+ year={2025},
72
+ eprint={2505.20161},
73
+ archivePrefix={arXiv},
74
+ primaryClass={cs.LG},
75
+ url={https://arxiv.org/abs/2505.20161},
76
+ }
77
+ ```
78
 
 
79
 
80
+ ## License/Terms of Use:
81
+ Governing Terms: This model is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
82
+ available at https://creativecommons.org/licenses/by/4.0/legalcode.
83
 
84
+ This model is trained with synthetic data generated from Qwen2.5-72B-Instruct.
85
+ If this dataset is used to create, train, fine tune, or otherwise improve an AI model,
86
+ which is distributed or made available, such AI model may be subject to redistribution
87
+ and use requirements in the [Qwen License Agreement](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE).
88
 
 
89