Update README.md
Browse files
README.md
CHANGED
|
@@ -19,21 +19,8 @@ BanglaTalk: Towards Real-Time Speech Assistance for Bengali Regional Dialects </
|
|
| 19 |
</div>
|
| 20 |
|
| 21 |
**BRDialect** - ASR system is trained on ten regional dialects of Bangladesh using the <a href="https://www.kaggle.com/competitions/ben10">Ben10</a> dataset from Bengali.AI.
|
| 22 |
-
<!-- APT-Eval is the first and largest dataset to evaluate the AI-text detectors behavior for AI-polished texts.
|
| 23 |
-
It contains almost **15K** text samples, polished by 5 different LLMs, for 6 different domains, with 2 major polishing types. All of these samples initially came from purely human written texts.
|
| 24 |
-
It not only includes AI-polished texts, but also includes fine-grained involvement of AI/LLM.
|
| 25 |
-
It is designed to push the boundary of AI-text detectors, for the scenarios where human uses LLM to minimally polish their own written texts. -->
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
| **Polish Type** | **GPT-4o** | **Llama3.1-70B** | **Llama3-8B** | **Llama2-7B** | **DeepSeek-V3** | **Total** |
|
| 30 |
-
|-------------------------------------------|------------|------------------|---------------|---------------|-- |-----------|
|
| 31 |
-
| **no-polish / pure HWT** | - | - | - | - | - | 300 |
|
| 32 |
-
| **Degree-based** | 1152 | 1085 | 1125 | 744 | 1141 | 4406 |
|
| 33 |
-
| **Percentage-based** | 2072 | 2048 | 1977 | 1282 | 2078 | 7379 |
|
| 34 |
-
| **Total** | 3224 | 3133 | 3102 | 2026 | 3219 | **15004** | -->
|
| 35 |
-
|
| 36 |
-
## Load the model
|
| 37 |
|
| 38 |
**Prerequisite**<br>
|
| 39 |
```
|
|
@@ -43,20 +30,20 @@ It is designed to push the boundary of AI-text detectors, for the scenarios wher
|
|
| 43 |
```
|
| 44 |
|
| 45 |
**Log in to HuggingFace**<br>
|
| 46 |
-
```
|
| 47 |
from huggingface_hub import login
|
| 48 |
login("TOKEN")
|
| 49 |
```
|
| 50 |
|
| 51 |
**Load base model and BRDialect**<br>
|
| 52 |
-
```
|
| 53 |
## BRDialect
|
| 54 |
from huggingface_hub import hf_hub_download
|
| 55 |
|
| 56 |
kenlm_model_path = hf_hub_download(repo_id="Jakir057/BRDialect", filename="BRDialect/5gram_kenlm.arpa")
|
| 57 |
state_dict_path = hf_hub_download(repo_id="Jakir057/BRDialect", filename="BRDialect/wav2vec2_bangla_regional_dialect.pth")
|
| 58 |
```
|
| 59 |
-
```
|
| 60 |
from transformers import AutoProcessor, AutoModelForCTC, Wav2Vec2ProcessorWithLM
|
| 61 |
import torch
|
| 62 |
import numpy as np
|
|
@@ -84,7 +71,7 @@ model.eval()
|
|
| 84 |
```
|
| 85 |
|
| 86 |
## Transcription Generation
|
| 87 |
-
```
|
| 88 |
sampling_rate = 16000
|
| 89 |
path = "AUDIO_PATH"
|
| 90 |
frame, sr = librosa.load(path, sr=sampling_rate, mono=True)
|
|
@@ -105,44 +92,6 @@ text = result.text
|
|
| 105 |
print(f"Transcription={text}")
|
| 106 |
```
|
| 107 |
|
| 108 |
-
<!-- ## Load the dataset
|
| 109 |
-
|
| 110 |
-
To load the dataset, install the library `datasets` with `pip install datasets`. Then,
|
| 111 |
-
```
|
| 112 |
-
from datasets import load_dataset
|
| 113 |
-
apt_eval_dataset = load_dataset("smksaha/apt-eval")
|
| 114 |
-
```
|
| 115 |
-
|
| 116 |
-
If you also want to access the original human written text samples, use this
|
| 117 |
-
```
|
| 118 |
-
from datasets import load_dataset
|
| 119 |
-
dataset = load_dataset("smksaha/apt-eval", data_files={
|
| 120 |
-
"test": "merged_apt_eval_dataset.csv",
|
| 121 |
-
"original": "original.csv"
|
| 122 |
-
})
|
| 123 |
-
``` -->
|
| 124 |
-
<!--
|
| 125 |
-
## Data fields
|
| 126 |
-
The RAID dataset has the following fields
|
| 127 |
-
|
| 128 |
-
```
|
| 129 |
-
1. `id`: A id that uniquely identifies each sample
|
| 130 |
-
2. `polish_type`: The type of polishing that was used to generate this text sample
|
| 131 |
-
- Choices: `['degree-based', 'percentage-based']`
|
| 132 |
-
3. `polishing_degree`: The degree of polishing that was used by the polisher to generate this text sample
|
| 133 |
-
- Choices: `["extreme_minor", "minor", "slight_major", "major"]`
|
| 134 |
-
4. `polishing_percent`: The percetnage of original text was prompted to the polisher to generate this text sample
|
| 135 |
-
- Choices: `["1", "5", "10", "20", "35", "50", "75"]`
|
| 136 |
-
5. `polisher`: The LLMs were used as polisher
|
| 137 |
-
- Choices: `["DeepSeek-V3", "GPT-4o", "Llama3.1-70B", "Llama3-8B", "Llama2-7B"]`
|
| 138 |
-
6. `domain`: The genre from where the original human written text was taken
|
| 139 |
-
- Choices: `['blog', 'email_content', 'game_review', 'news', 'paper_abstract', 'speech']`
|
| 140 |
-
7. `generation`: The text of the generation
|
| 141 |
-
8. `sem_similarity`: The semantic similarity between polished text and original human written text
|
| 142 |
-
9. `levenshtein_distance`: The levenshtein distance between polished text and original human written text
|
| 143 |
-
10. `jaccard_distance`: The jaccard distance between polished text and original human written text
|
| 144 |
-
``` -->
|
| 145 |
-
|
| 146 |
## Citation
|
| 147 |
|
| 148 |
```
|
|
@@ -152,4 +101,14 @@ The RAID dataset has the following fields
|
|
| 152 |
journal={arXiv preprint arXiv:2510.06188},
|
| 153 |
year={2025}
|
| 154 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
```
|
|
|
|
| 19 |
</div>
|
| 20 |
|
| 21 |
**BRDialect** - ASR system is trained on ten regional dialects of Bangladesh using the <a href="https://www.kaggle.com/competitions/ben10">Ben10</a> dataset from Bengali.AI.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
## Load the BRDialect ASR System
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
**Prerequisite**<br>
|
| 26 |
```
|
|
|
|
| 30 |
```
|
| 31 |
|
| 32 |
**Log in to HuggingFace**<br>
|
| 33 |
+
```python
|
| 34 |
from huggingface_hub import login
|
| 35 |
login("TOKEN")
|
| 36 |
```
|
| 37 |
|
| 38 |
**Load base model and BRDialect**<br>
|
| 39 |
+
```python
|
| 40 |
## BRDialect
|
| 41 |
from huggingface_hub import hf_hub_download
|
| 42 |
|
| 43 |
kenlm_model_path = hf_hub_download(repo_id="Jakir057/BRDialect", filename="BRDialect/5gram_kenlm.arpa")
|
| 44 |
state_dict_path = hf_hub_download(repo_id="Jakir057/BRDialect", filename="BRDialect/wav2vec2_bangla_regional_dialect.pth")
|
| 45 |
```
|
| 46 |
+
```python
|
| 47 |
from transformers import AutoProcessor, AutoModelForCTC, Wav2Vec2ProcessorWithLM
|
| 48 |
import torch
|
| 49 |
import numpy as np
|
|
|
|
| 71 |
```
|
| 72 |
|
| 73 |
## Transcription Generation
|
| 74 |
+
```python
|
| 75 |
sampling_rate = 16000
|
| 76 |
path = "AUDIO_PATH"
|
| 77 |
frame, sr = librosa.load(path, sr=sampling_rate, mono=True)
|
|
|
|
| 92 |
print(f"Transcription={text}")
|
| 93 |
```
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
## Citation
|
| 96 |
|
| 97 |
```
|
|
|
|
| 101 |
journal={arXiv preprint arXiv:2510.06188},
|
| 102 |
year={2025}
|
| 103 |
}
|
| 104 |
+
|
| 105 |
+
@inproceedings{javed2022towards,
|
| 106 |
+
title={Towards building asr systems for the next billion users},
|
| 107 |
+
author={Javed, Tahir and Doddapaneni, Sumanth and Raman, Abhigyan and Bhogale, Kaushal Santosh and Ramesh, Gowtham and Kunchukuttan, Anoop and Kumar, Pratyush and Khapra, Mitesh M},
|
| 108 |
+
booktitle={Proceedings of the aaai conference on artificial intelligence},
|
| 109 |
+
volume={36},
|
| 110 |
+
number={10},
|
| 111 |
+
pages={10813--10821},
|
| 112 |
+
year={2022}
|
| 113 |
+
}
|
| 114 |
```
|