File size: 2,143 Bytes
931a881
8f6925d
931a881
 
8f6925d
931a881
 
 
 
8f6925d
 
 
 
 
 
 
 
 
931a881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: Jarbas/m2v-256-albertina-100m-portuguese-ptpt-encoder
library_name: model2vec
license: mit
model_name: ovos-model2vec-intents-albertina-100m-portuguese-ptpt-encoder
tags:
- embeddings
- static-embeddings
- sentence-transformers
datasets:
- Jarbas/ovos-llm-augmented-intents
- Jarbas/ovos-weather-intents
- Jarbas/music_queries_templates
- Jarbas/OVOSGitLocalize-Intents
- Jarbas/ovos_intent_examples
- Jarbas/ovos-common-query-intents
language:
- pt
---

# model_pt_m2v-256-albertina-100m-portuguese-ptpt-encoder Model Card

This [Model2Vec](https://github.com/MinishLab/model2vec) model is a fine-tuned version of the [unknown](https://huggingface.co/unknown) Model2Vec model. It also includes a classifier head on top.

## Installation

Install model2vec using pip:
```
pip install model2vec[inference]
```

## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec.inference import StaticModelPipeline

# Load a pretrained Model2Vec model
model = StaticModelPipeline.from_pretrained("model_pt_m2v-256-albertina-100m-portuguese-ptpt-encoder")

# Predict labels
predicted = model.predict(["Example sentence"])
```

## Additional Resources

- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
- [Website](https://minishlab.github.io/)

## Library Authors

Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).

## Citation

Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@article{minishlab2024model2vec,
  author = {Tulkens, Stephan and {van Dongen}, Thomas},
  title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
  year = {2024},
  url = {https://github.com/MinishLab/model2vec}
}
```