Jaward Sesay's picture

Jaward Sesay

Jaward

AI & ML interests

I like to train large deep neural nets too 🧠🤖💥 | First Paper (AutoAgents: A Framework for Automatic Agent Generation) Accepted @ IJCAI 2024 | Role Model Karpathy

Recent Activity

Articles

Organizations

MLX Community's profile picture

Jaward's activity

reacted to mlabonne's post with 🧠 2 days ago
view post
Post
2032
🆕 LLM Course 2025 edition!

I updated the LLM Scientist roadmap and added a ton of new information and references. It covers training, datasets, evaluation, quantization, and new trends like test-time compute scaling.

The LLM Course has been incredibly popular (41.3k stars!) and I've been touched to receive many, many messages about how it helped people in their careers.

I know how difficult this stuff can be, so I'm super proud of the impact it had. I want to keep updating it in 2025, especially with the LLM Engineer roadmap.

Thanks everyone, hope you'll enjoy it!

💻 LLM Course: https://huggingface.co/blog/mlabonne/llm-course
posted an update 4 days ago
posted an update 9 days ago
posted an update 11 days ago
view post
Post
2295
damn I love nvidia's bullish stance on taking AI to the edge - from being the overlord of compute to cutting-edge physical AI with SOTA multiverse simulation engines that brings the scaling laws under your control!!

My favorite: Cosmos - fully opensourced, open-weight physics based video gen platform, what an incredible way to start off the year✨

Code: https://github.com/NVIDIA/Cosmos
Models: nvidia/cosmos-6751e884dc10e013a0a0d8e6
Paper: https://d1qx31qr3h6wln.cloudfront.net/publications/NVIDIA%20Cosmos_2.pdf
posted an update 21 days ago
view post
Post
2991
nanoBLT: Simplified lightweight implementation of a character-level Byte Latent Transformer model (under 500 lines of code). The model is 2x4x2 (n_layers_encoder, n_layers_latent, n_layers_decoder) layer deep trained on ~1M bytes of tiny Shakespeare with a patch size of 4.

Code: https://github.com/Jaykef/ai-algorithms/blob/main/byte_latent_transformer.ipynb
replied to their post 28 days ago
view reply

btw the background songs in the videos are actually what I listen to during implementation

posted an update 28 days ago
posted an update about 1 month ago
view post
Post
602
In Honour of This Year's NeurIPs Test of Time Paper Awardees
This year's NIPs Test of Time Paper Awards went to two groundbreaking papers:
1. Generative Adversarial Nets (Goodfellow et al)
2. Sequence to Sequence Learning with Neural Networks (Ilya et al)
Let's explore how these papers helped pioneered breakthroughs in today's AI:

Full Article: https://huggingface.co/blog/Jaward/nip
posted an update about 1 month ago
view post
Post
645
Lightweight implementation of the seminal paper “Sequence to Sequence Learning with Neural Networks”

Built, trained and eval a 2 layer deep seq2seq LSTM-based model (~10M params) on German-English corpus of Multi30K dataset. In honor of
ilya sutskever et al for winning this year’s NeurIPSConf Test of Time paper award 🫡

Code: https://github.com/Jaykef/ai-algorithms/blob/main/seq2seq.ipynb
posted an update about 2 months ago
view post
Post
487
Rethinking Backpropagation: Thoughts on What's Wrong with Backpropagation

As a young researcher, I've often pondered the limitations of backpropagation, especially when mapped with how learning occurs in the human brain. While backpropagation has been the workhorse of deep learning, it isn't without flaws. In this post, I aim to share some thoughts on these shortcomings from first principles.

Full article
https://huggingface.co/blog/Jaward/rethinking-backpropagation
posted an update about 2 months ago
view post
Post
2428
Implements compute-efficient DeepPCR algorithm which parallelizes sequential operations thus speeding up inference and training of neural networks. DeepPCR can significantly reduce the time complexity in operations such as denoising in latent diffusion space from O(L) to O(log2 L).

Code: https://github.com/Jaykef/ai-algorithms/blob/main/deep_pcr.ipynb
posted an update about 2 months ago
posted an update 2 months ago
posted an update 2 months ago
view post
Post
1742
Interesting Work on Reasoning 🤔
- explores a new take on few-shot reasoning while challenging assumptions that program synthesis is necessary for abstract reasoning.
- shows test-time training + smart inference tricks can match human-average performance, though at high computational cost. Key insight: proper compute allocation matters more than method (whether symbolic or neural).

Paper: https://ekinakyurek.github.io/papers/ttt.pdf
posted an update 3 months ago
view post
Post
2110
It's work like this that in some way signal the eventual “dominance” of AI over all the sciences.

“We train our model on the six-dimensional N-body phase space, predicting particle velocities as the time derivative of the model’s displacement outputs”

The emulator is capable of predicting
the nonlinear displacement and velocity fields for 128^3 particles in half a second on a single GPU🤯
  • 1 reply
·
posted an update 3 months ago
view post
Post
1752
Triton nanoGPT now has a custom cross entropy loss kernel 🚀
Next: matmul, gradually overthrowing all major PyTorch ops:)

Simplified pseudo for parallel cross-entropy loss compute:
- init program: get pid, compute offsets, load targets.
- init row_max and row_sum.
- for-loop1 (find max logits): update row_max with max logits.
- for-loop2 (compute softmax and loss): compute row_sum, update loss.
- add log(row_sum) and store loss.

Code: https://github.com/Jaykef/ai-algorithms/blob/main/triton_nanoGPT.ipynb
posted an update 3 months ago
posted an update 3 months ago
reacted to clem's post with 👍 3 months ago
view post
Post
4165
Open-source AI creates healthy competition in a field where natural tendencies lead to extreme concentration of power. Imagine a world where only one or two companies could build software. This is the biggest risk and ethical challenge of them all IMO. Let's fight this!
  • 3 replies
·
reacted to clem's post with 👍 3 months ago
view post
Post
3712
Very few people realize that most of the successful AI startups got successful because they were focused on open science and open-source for at least their first few years. To name but a few, OpenAI (GPT, GPT2 was open-source), Runway & Stability (stable diffusion), Cohere, Mistral and of course Hugging Face!

The reasons are not just altruistic, it's also because sharing your science and your models pushes you to build AI faster (which is key in a fast-moving domain like AI), attracts the best scientists & engineers and generates much more visibility, usage and community contributions than if you were 100% closed-source. The same applies to big tech companies as we're seeing with Meta and Google!

More startups and companies should release research & open-source AI, it's not just good for the world but also increases their probability of success!
·