--- language: en license: mit datasets: - toxic_comment_classification tags: - text-classification - toxicity-detection - sentiment-analysis - multi-task-learning pipeline_tag: text-classification --- # Comment MTL BERT Model This is a BERT-based multi-task learning model capable of performing sentiment analysis and toxicity detection simultaneously. ## Model Architecture The model is based on the `bert-base-uncased` pre-trained model with two separate classification heads: - **Sentiment Analysis Head**: 3-class classification (Negative, Neutral, Positive) - **Toxicity Detection Head**: 6-class multi-label classification (toxic, severe_toxic, obscene, threat, insult, identity_hate) ### Technical Parameters - Hidden Size: 768 - Number of Attention Heads: 12 - Number of Hidden Layers: 12 - Vocabulary Size: 30522 - Maximum Position Embeddings: 512 - Hidden Activation Function: gelu - Dropout Probability: 0.1 ## Usage ### Loading the Model ```python from transformers import AutoTokenizer from src.model import CommentMTLModel import torch # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Load model model = CommentMTLModel( model_name="bert-base-uncased", num_sentiment_labels=3, num_toxicity_labels=6 ) # Load pre-trained weights state_dict = torch.load("model.bin", map_location=torch.device('cpu')) model.load_state_dict(state_dict) model.eval() ``` ### Model Inference ```python # Prepare input text = "This is a test comment." inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128) # Model inference with torch.no_grad(): outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) # Get results sentiment_logits = outputs["sentiment_logits"] toxicity_logits = outputs["toxicity_logits"] # Process sentiment analysis results sentiment_probs = torch.softmax(sentiment_logits, dim=1) sentiment_labels = {0: "Negative", 1: "Neutral", 2: "Positive"} sentiment_prediction = sentiment_labels[sentiment_probs.argmax().item()] # Process toxicity detection results toxicity_probs = torch.sigmoid(toxicity_logits) toxicity_cols = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] toxicity_results = {label: prob.item() for label, prob in zip(toxicity_cols, toxicity_probs[0])} print(f"Sentiment: {sentiment_prediction}") print(f"Toxicity probabilities: {toxicity_results}") ``` ## Limitations - This model has been trained only on English data and is not suitable for other languages. - The toxicity detection function may produce false positives for some edge cases. - The model may lose some information when processing long texts due to the maximum input length limit of 128 tokens. ## Citation If you use this model, please cite our repository: ``` @misc{comment-mtl-bert, author = {Aseem}, title = {Comment MTL BERT: Multi-Task Learning for Comment Analysis}, year = {2023}, publisher = {GitHub}, url = {https://huggingface.co/Aseemks07/comment_mtl_bert_best} } ```