File size: 2,227 Bytes
29e2af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: koelectra-base-v3-discriminator-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: klue
type: klue
args: ner
metrics:
- name: Precision
type: precision
value: 0.6665182546749777
- name: Recall
type: recall
value: 0.7350073648032546
- name: F1
type: f1
value: 0.6990893625537877
- name: Accuracy
type: accuracy
value: 0.9395764497172635
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# koelectra-base-v3-discriminator-finetuned-ner
This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1957
- Precision: 0.6665
- Recall: 0.7350
- F1: 0.6991
- Accuracy: 0.9396
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 438 | 0.2588 | 0.5701 | 0.6655 | 0.6141 | 0.9212 |
| 0.4333 | 2.0 | 876 | 0.2060 | 0.6671 | 0.7134 | 0.6895 | 0.9373 |
| 0.1944 | 3.0 | 1314 | 0.1957 | 0.6665 | 0.7350 | 0.6991 | 0.9396 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.0+cu102
- Datasets 1.14.0
- Tokenizers 0.10.3
|