File size: 13,689 Bytes
6a77297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from time import time
import warnings
warnings.filterwarnings('ignore')
class ImprovedZetaNet(nn.Module):
def __init__(self, input_size=2, hidden_sizes=[128, 256, 128, 64], output_size=2, dropout_rate=0.1):
super(ImprovedZetaNet, self).__init__()
# Construir camadas dinamicamente
layers = []
prev_size = input_size
for hidden_size in hidden_sizes:
layers.extend([
nn.Linear(prev_size, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(),
nn.Dropout(dropout_rate)
])
prev_size = hidden_size
# Camada de saída sem ativação
layers.append(nn.Linear(prev_size, output_size))
self.network = nn.Sequential(*layers)
# Inicialização Xavier/Glorot
self._initialize_weights()
def _initialize_weights(self):
for module in self.modules():
if isinstance(module, nn.Linear):
nn.init.xavier_normal_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
def forward(self, x):
return self.network(x)
class ZetaTrainer:
def __init__(self, model, device='cpu'):
self.model = model.to(device)
self.device = device
self.train_losses = []
self.val_losses = []
def train_epoch(self, train_loader, optimizer, criterion):
self.model.train()
total_loss = 0
num_batches = 0
for batch_x, batch_y in train_loader:
batch_x, batch_y = batch_x.to(self.device), batch_y.to(self.device)
optimizer.zero_grad()
predictions = self.model(batch_x)
loss = criterion(predictions, batch_y)
loss.backward()
# Gradient clipping para estabilidade
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
optimizer.step()
total_loss += loss.item()
num_batches += 1
return total_loss / num_batches
def validate(self, val_loader, criterion):
self.model.eval()
total_loss = 0
num_batches = 0
with torch.no_grad():
for batch_x, batch_y in val_loader:
batch_x, batch_y = batch_x.to(self.device), batch_y.to(self.device)
predictions = self.model(batch_x)
loss = criterion(predictions, batch_y)
total_loss += loss.item()
num_batches += 1
return total_loss / num_batches
def train(self, train_loader, val_loader, epochs=200, learning_rate=0.001, patience=20):
# Usar Adam com weight decay
optimizer = optim.AdamW(self.model.parameters(), lr=learning_rate, weight_decay=1e-5)
# Learning rate scheduler
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.5, patience=10, verbose=True
)
criterion = nn.MSELoss()
best_val_loss = float('inf')
patience_counter = 0
print(f"Iniciando treinamento por {epochs} épocas...")
print("-" * 60)
for epoch in range(epochs):
# Treinar
train_loss = self.train_epoch(train_loader, optimizer, criterion)
# Validar
val_loss = self.validate(val_loader, criterion)
# Atualizar scheduler
scheduler.step(val_loss)
# Salvar histórico
self.train_losses.append(train_loss)
self.val_losses.append(val_loss)
# Early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
# Salvar melhor modelo
torch.save(self.model.state_dict(), 'best_zetanet.pth')
else:
patience_counter += 1
# Print progress
if (epoch + 1) % 20 == 0 or epoch == 0:
current_lr = optimizer.param_groups[0]['lr']
print(f"Época {epoch+1:3d}/{epochs} | "
f"Train Loss: {train_loss:.6f} | "
f"Val Loss: {val_loss:.6f} | "
f"LR: {current_lr:.2e}")
# Early stopping
if patience_counter >= patience:
print(f"\nEarly stopping na época {epoch+1}")
break
# Carregar melhor modelo
self.model.load_state_dict(torch.load('best_zetanet.pth'))
print(f"\nTreinamento concluído! Melhor perda de validação: {best_val_loss:.6f}")
def parse_complex_improved(value):
"""Função melhorada para parsing de números complexos"""
if pd.isna(value):
return np.nan
value = str(value).strip()
# Remover parênteses
value = value.replace('(', '').replace(')', '')
# Substituir vírgulas por pontos
value = value.replace(',', '.')
# Casos especiais
if value == '' or value.lower() == 'nan':
return np.nan
try:
# Se não tem 'j' ou 'i', adicionar 'j' no final
if 'j' not in value.lower() and 'i' not in value.lower():
if '+' in value or '-' in value[1:]: # Tem parte real e imaginária
value += 'j'
else: # Só parte real
return complex(float(value), 0)
# Substituir 'i' por 'j'
value = value.replace('i', 'j')
return complex(value)
except (ValueError, TypeError):
return np.nan
def load_and_preprocess_data(filepath, test_size=0.2, random_state=42):
"""Carrega e preprocessa os dados com melhor tratamento de erros"""
print("Carregando dados...")
try:
data = pd.read_csv(filepath)
print(f"Dados carregados: {len(data)} amostras")
except FileNotFoundError:
print(f"Arquivo {filepath} não encontrado!")
return None
# Limpar e converter dados complexos
print("Processando números complexos...")
data['s'] = data['s'].apply(parse_complex_improved)
data['zeta(s)'] = data['zeta(s)'].apply(parse_complex_improved)
# Remover valores inválidos
initial_len = len(data)
data = data.dropna()
final_len = len(data)
if final_len < initial_len:
print(f"Removidas {initial_len - final_len} amostras inválidas")
if len(data) == 0:
print("Nenhum dado válido encontrado!")
return None
# Separar partes real e imaginária
data['s_real'] = data['s'].apply(lambda x: x.real)
data['s_imag'] = data['s'].apply(lambda x: x.imag)
data['zeta_real'] = data['zeta(s)'].apply(lambda x: x.real)
data['zeta_imag'] = data['zeta(s)'].apply(lambda x: x.imag)
# Preparar features e targets
X = data[['s_real', 's_imag']].values
y = data[['zeta_real', 'zeta_imag']].values
# Split treino/validação
X_train, X_val, y_train, y_val = train_test_split(
X, y, test_size=test_size, random_state=random_state
)
# Normalização robusta
scaler_X = StandardScaler()
scaler_y = StandardScaler()
X_train_scaled = scaler_X.fit_transform(X_train)
X_val_scaled = scaler_X.transform(X_val)
y_train_scaled = scaler_y.fit_transform(y_train)
y_val_scaled = scaler_y.transform(y_val)
# Converter para tensores
X_train_tensor = torch.FloatTensor(X_train_scaled)
X_val_tensor = torch.FloatTensor(X_val_scaled)
y_train_tensor = torch.FloatTensor(y_train_scaled)
y_val_tensor = torch.FloatTensor(y_val_scaled)
print(f"Dados preprocessados:")
print(f" Treino: {len(X_train_tensor)} amostras")
print(f" Validação: {len(X_val_tensor)} amostras")
return {
'train': (X_train_tensor, y_train_tensor),
'val': (X_val_tensor, y_val_tensor),
'scalers': (scaler_X, scaler_y),
'raw_data': data
}
def create_data_loaders(data_dict, batch_size=64):
"""Cria DataLoaders do PyTorch"""
train_dataset = torch.utils.data.TensorDataset(
data_dict['train'][0], data_dict['train'][1]
)
val_dataset = torch.utils.data.TensorDataset(
data_dict['val'][0], data_dict['val'][1]
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=batch_size, shuffle=False
)
return train_loader, val_loader
def plot_results(trainer, data_dict, model):
"""Plota resultados do treinamento e predições"""
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
# 1. Curvas de perda
axes[0,0].plot(trainer.train_losses, label='Treino', alpha=0.8)
axes[0,0].plot(trainer.val_losses, label='Validação', alpha=0.8)
axes[0,0].set_xlabel('Época')
axes[0,0].set_ylabel('MSE Loss')
axes[0,0].set_title('Curvas de Aprendizado')
axes[0,0].legend()
axes[0,0].grid(True, alpha=0.3)
axes[0,0].set_yscale('log')
# 2. Predições vs Real (parte real)
model.eval()
with torch.no_grad():
X_val, y_val = data_dict['val']
predictions = model(X_val)
# Denormalizar
scaler_y = data_dict['scalers'][1]
y_val_denorm = scaler_y.inverse_transform(y_val.numpy())
pred_denorm = scaler_y.inverse_transform(predictions.numpy())
axes[0,1].scatter(y_val_denorm[:, 0], pred_denorm[:, 0], alpha=0.6, s=1)
axes[0,1].plot([y_val_denorm[:, 0].min(), y_val_denorm[:, 0].max()],
[y_val_denorm[:, 0].min(), y_val_denorm[:, 0].max()], 'r--')
axes[0,1].set_xlabel('ζ(s) Real - Valor Real')
axes[0,1].set_ylabel('ζ(s) Real - Predição')
axes[0,1].set_title('Parte Real: Predição vs Real')
axes[0,1].grid(True, alpha=0.3)
# 3. Predições vs Real (parte imaginária)
axes[1,0].scatter(y_val_denorm[:, 1], pred_denorm[:, 1], alpha=0.6, s=1)
axes[1,0].plot([y_val_denorm[:, 1].min(), y_val_denorm[:, 1].max()],
[y_val_denorm[:, 1].min(), y_val_denorm[:, 1].max()], 'r--')
axes[1,0].set_xlabel('ζ(s) Imag - Valor Real')
axes[1,0].set_ylabel('ζ(s) Imag - Predição')
axes[1,0].set_title('Parte Imaginária: Predição vs Real')
axes[1,0].grid(True, alpha=0.3)
# 4. Distribuição dos erros
errors_real = np.abs(y_val_denorm[:, 0] - pred_denorm[:, 0])
errors_imag = np.abs(y_val_denorm[:, 1] - pred_denorm[:, 1])
axes[1,1].hist(errors_real, bins=50, alpha=0.7, label='Erro Parte Real')
axes[1,1].hist(errors_imag, bins=50, alpha=0.7, label='Erro Parte Imag')
axes[1,1].set_xlabel('Erro Absoluto')
axes[1,1].set_ylabel('Frequência')
axes[1,1].set_title('Distribuição dos Erros')
axes[1,1].legend()
axes[1,1].grid(True, alpha=0.3)
axes[1,1].set_yscale('log')
plt.tight_layout()
plt.savefig('zetanet_results.png', dpi=300, bbox_inches='tight')
plt.show()
# Estatísticas
print(f"\nEstatísticas de Erro:")
print(f"Erro médio (parte real): {errors_real.mean():.6f}")
print(f"Erro médio (parte imag): {errors_imag.mean():.6f}")
print(f"Erro máximo (parte real): {errors_real.max():.6f}")
print(f"Erro máximo (parte imag): {errors_imag.max():.6f}")
def main():
start_time = time()
# Configurações
FILEPATH = "/content/combined_zeta_data.csv" # Ajuste o caminho
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Usando dispositivo: {DEVICE}")
# Carregar e preprocessar dados
data_dict = load_and_preprocess_data(FILEPATH)
if data_dict is None:
return
# Criar data loaders
train_loader, val_loader = create_data_loaders(data_dict, batch_size=128)
# Criar modelo melhorado
model = ImprovedZetaNet(
input_size=2,
hidden_sizes=[128, 256, 256, 128, 64],
output_size=2,
dropout_rate=0.1
)
print(f"\nArquitetura do modelo:")
print(model)
# Contar parâmetros
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"\nParâmetros totais: {total_params:,}")
print(f"Parâmetros treináveis: {trainable_params:,}")
# Treinar modelo
trainer = ZetaTrainer(model, DEVICE)
trainer.train(
train_loader, val_loader,
epochs=300,
learning_rate=0.001,
patience=30
)
# Plotar resultados
plot_results(trainer, data_dict, model)
end_time = time()
print(f"\nTempo total de execução: {(end_time - start_time):.2f} segundos")
if __name__ == "__main__":
main() |