File size: 2,195 Bytes
47b6bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: quickdraw-ConvNeXT-Tiny-Finetune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# quickdraw-ConvNeXT-Tiny-Finetune
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8413
- Accuracy: 0.7826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 1.0895 | 0.5688 | 5000 | 1.0618 | 0.7278 |
| 0.8912 | 1.1377 | 10000 | 0.9315 | 0.7602 |
| 0.8658 | 1.7065 | 15000 | 0.8871 | 0.7701 |
| 0.7558 | 2.2753 | 20000 | 0.8653 | 0.7780 |
| 0.7578 | 2.8441 | 25000 | 0.8392 | 0.7826 |
| 0.6249 | 3.4130 | 30000 | 0.8584 | 0.7842 |
| 0.6243 | 3.9818 | 35000 | 0.8410 | 0.7882 |
| 0.4585 | 4.5506 | 40000 | 0.9402 | 0.7828 |
| 0.2934 | 5.1195 | 45000 | 1.0587 | 0.7758 |
| 0.2869 | 5.6883 | 50000 | 1.1280 | 0.7745 |
| 0.1837 | 6.2571 | 55000 | 1.2402 | 0.7684 |
| 0.1858 | 6.8259 | 60000 | 1.2570 | 0.7679 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1
- Datasets 2.19.1
- Tokenizers 0.19.1
|