English
music
File size: 14,640 Bytes
bd2d17d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright (2023) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch
import soundfile as sf
import torch.nn as nn
import torch.nn.functional as F
from peft import LoraConfig, TaskType, get_peft_model
from transformers import (
    WhisperFeatureExtractor,
    WhisperModel,
    # LlamaForCausalLM,
    LlamaTokenizer
)
from modeling_llama import LlamaForCausalLM
import librosa
from beats.BEATs import BEATsConfig, BEATs
from qformer.Qformer import BertConfig, BertLMHeadModel
from typing import List, Optional, Tuple, Union

IGNORE_INDEX = -100


class SALMONN(nn.Module):
    def __init__(self, ckpt, whisper_path, beats_path, vicuna_path,
                 speech_qformer_token_num=1, speech_qformer_layer=2,
                 lora=True, lora_alpha=32, lora_rank=8, lora_dropout=0.1,
                 second_per_frame=0.333333, second_stride=0.333333, compute_dtype=torch.float16):

        super().__init__()

        # feature_extractor
        self.feature_extractor = WhisperFeatureExtractor.from_pretrained(whisper_path)

        # whisper
        self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder
        for name, param in self.speech_encoder.named_parameters():
            param.requires_grad = False
        self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model)
        print('Whisper model loaded ........')

        # beats
        self.beats_ckpt = beats_path
        beats_checkpoint = torch.load(self.beats_ckpt, map_location='cpu')
        beats = BEATs(BEATsConfig(beats_checkpoint['cfg']))
        beats.load_state_dict(beats_checkpoint['model'])
        self.beats = beats
        for name, param in self.beats.named_parameters():
            param.requires_grad = False
        self.beats.eval()
        self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
        print('Beats model loaded ........')

        # init speech Qformer
        self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
            speech_qformer_token_num,
            self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim,
            speech_qformer_layer,
        )
        self.second_per_frame = second_per_frame
        self.second_stride = second_stride
        print('Qformer model initialised ........')

        # vicuna
        self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_path, torch_dtype=compute_dtype)
        self.config = self.llama_model.config
        print('Vicuna model loaded ........')

        # lora
        self.lora = lora
        if lora:
            target_modules = None
            self.peft_config = LoraConfig(
                task_type=TaskType.CAUSAL_LM, inference_mode=False, target_modules=target_modules,
                r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
            )
            self.llama_model = get_peft_model(self.llama_model, self.peft_config)
            print('Added LoRA ........')

        # tokenizer
        self.tokenizer = LlamaTokenizer.from_pretrained(vicuna_path, use_fast=False)
        self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.tokenizer.padding_side = "right"

        # proj
        self.speech_llama_proj = nn.Linear(self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size)

        # load ckpt
        print('Loading Parameters ........')
        ckpt_dict = torch.load(ckpt, map_location='cpu')
        if 'model' in ckpt_dict:
            ckpt_dict = ckpt_dict['model']
        for name, param in ckpt_dict.items():
            if name in self.state_dict():
                print('Loaded:', name)
        self.load_state_dict(ckpt_dict, strict=False)

    def forward(
            self,
            input_ids, labels, speeches, audios,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        speech_embeds, sources, targets = [], [], []
        for speech_embed, audio_embed, input_id, label in zip(speeches, audios, input_ids, labels):
            speech_embed, audio_embed = speech_embed.to('cuda'), audio_embed.to('cuda')
            # auditory embeds
            speech_embed = self.ln_speech(speech_embed)
            audio_embed = self.ln_audio(audio_embed)
            audio_embed = F.pad(audio_embed, (0, 0, 0, speech_embed.size(1) - audio_embed.size(1)))
            speech_embed = torch.cat([speech_embed, audio_embed], dim=-1)

            # split frames
            B, T, C = speech_embed.shape
            kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0)
            kernel, stride = (1, kernel), (1, stride)
            speech_embeds_tr = speech_embed.transpose(1, 2).unsqueeze(2)
            speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride)
            _, _, L = speech_embeds_overlap.shape
            speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L)
            speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1])
            speech_embed = speech_embeds_overlap.reshape(-1, kernel[1], C)
            speech_atts = torch.ones(speech_embed.size()[:-1], dtype=torch.long, device=speech_embed.device)

            # Qformer
            query_tokens = self.speech_query_tokens.expand(speech_embed.shape[0], -1, -1)
            query_output = self.speech_Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=speech_embed,
                encoder_attention_mask=speech_atts,
                return_dict=True,
                use_cache=False
            )
            speech_embed = self.speech_llama_proj(query_output.last_hidden_state)
            speech_embed = speech_embed.view(B, -1, speech_embed.size(2)).contiguous()

            sources.append(
                torch.concat([
                    torch.LongTensor([self.tokenizer.bos_token_id]).to(input_id[0].device),
                    input_id[0],
                    torch.LongTensor([self.tokenizer.bos_token_id] * speech_embed.shape[1]).to(input_id[0].device),
                    input_id[1],
                    torch.LongTensor([self.tokenizer.eos_token_id]).to(input_id[0].device),
                ])
            )
            targets.append(
                torch.concat([
                    torch.LongTensor([IGNORE_INDEX]).to(label[0].device),
                    label[0],
                    torch.LongTensor([IGNORE_INDEX] * speech_embed.shape[1]).to(label[0].device),
                    label[1],
                    torch.LongTensor([self.tokenizer.eos_token_id]).to(label[0].device),
                ])
            )
            speech_embeds.append(speech_embed)

        start_length = len(input_ids[0][0]) + 1

        # USER: <Speech>speech_embeds<Speech> prompt\nASSISTANT:
        PADDING_TOKEN = 0
        embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens

        input_ids = torch.nn.utils.rnn.pad_sequence(sources, batch_first=True, padding_value=PADDING_TOKEN)
        labels = torch.nn.utils.rnn.pad_sequence(targets, batch_first=True, padding_value=PADDING_TOKEN)
        attention_mask = input_ids.ne(PADDING_TOKEN)

        inputs_embeds = []
        for input_id, speech_embed in zip(input_ids, speech_embeds):
            left_embeds = embed_tokens(input_id[:start_length])
            right_embeds = embed_tokens(input_id[start_length + speech_embed.shape[1]:])
            concat_tensor = torch.concat([left_embeds, speech_embed[0], right_embeds], dim=0).contiguous()
            inputs_embeds.append(concat_tensor)

        inputs_embeds = torch.stack(inputs_embeds)

        return self.llama_model.forward(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=False,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )

    def generate(
            self,
            wav_path, prompt, prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:", device='cuda:0',
            max_length=2048, num_beams=4, do_sample=True, min_length=1, top_p=0.9, top_k=50,
            repetition_penalty=1.0, length_penalty=1.0, temperature=1.0, bdr=(0, 240), num_return_sequences=1
    ):
        # read wav
        wav, sr = sf.read(wav_path)
        if len(wav.shape) == 2:
            wav = wav[:, 0]
        wav = wav[int(bdr[0] * sr): int(bdr[1] * sr)]
        if sr != 16000:
            wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft")

        # whisper
        spectrogram = self.feature_extractor(wav, return_tensors="pt", sampling_rate=16000).input_features.to(
            device)  # [1, 80, 3000]
        speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state

        # beats
        raw_wav = torch.from_numpy(wav).to(device).unsqueeze(0)
        audio_padding_mask = torch.zeros(raw_wav.shape, device=device).bool()
        audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True)

        # auditory embeds
        speech_embeds = self.ln_speech(speech_embeds)
        audio_embeds = self.ln_audio(audio_embeds)
        audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1)))
        speech_embeds = torch.cat([speech_embeds, audio_embeds], dim=-1)

        # split frames
        B, T, C = speech_embeds.shape
        kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0)
        kernel, stride = (1, kernel), (1, stride)
        speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2)
        speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride)
        _, _, L = speech_embeds_overlap.shape
        speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L)
        speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1])
        speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C)
        speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device)

        # Qformer
        query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1)
        query_output = self.speech_Qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=speech_embeds,
            encoder_attention_mask=speech_atts,
            return_dict=True,
        )
        speech_embeds = self.speech_llama_proj(query_output.last_hidden_state)
        speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous()

        # USER: <Speech>speech_embeds<Speech> prompt\nASSISTANT:
        embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens
        prompt_left, prompts_right = prompt_pattern.format(prompt).split('<SpeechHere>')

        prompt_left_ids = self.tokenizer(prompt_left, return_tensors="pt", add_special_tokens=False).to(
            speech_embeds.device).input_ids
        prompt_left_embeds = embed_tokens(prompt_left_ids)

        prompt_right_ids = self.tokenizer(prompts_right, return_tensors="pt", add_special_tokens=False).to(
            speech_embeds.device).input_ids
        prompt_right_embeds = embed_tokens(prompt_right_ids)

        bos_embeds = self.llama_model.model.embed_tokens(
            torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id
        ) if not self.lora else self.llama_model.model.model.embed_tokens(
            torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id
        )

        embeds = torch.cat([bos_embeds, prompt_left_embeds, speech_embeds, prompt_right_embeds], dim=1)
        atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)

        # generate
        output = self.llama_model.generate(
            inputs_embeds=embeds,
            max_length=max_length,
            num_beams=num_beams,
            do_sample=do_sample,
            min_length=min_length,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            temperature=temperature,
            num_return_sequences=num_return_sequences,
            attention_mask=atts,
            bos_token_id=self.tokenizer.bos_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=self.tokenizer.pad_token_id,
            # use_cache=False
        )

        output_text = self.tokenizer.batch_decode(output, add_special_tokens=False, skip_special_tokens=True)

        # output_text = self.tokenizer.batch_decode(output)
        return output_text

    def init_speech_Qformer(self, num_query_token, speech_width, num_hidden_layers=2):
        encoder_config = BertConfig()
        encoder_config.num_hidden_layers = num_hidden_layers
        encoder_config.encoder_width = speech_width
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = 1
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel(config=encoder_config)
        query_tokens = nn.Parameter(
            torch.zeros(1, num_query_token, encoder_config.hidden_size)
        )
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        return Qformer, query_tokens