|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import argparse |
|
from model import SALMONN |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--ckpt_path", type=str, default='./salomnn_7b.bin') |
|
parser.add_argument("--whisper_path", type=str, default='whisper-large-v2') |
|
parser.add_argument("--beats_path", type=str, default='BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt') |
|
parser.add_argument("--vicuna_path", type=str, default='vicuna-7b-v1.5') |
|
parser.add_argument("--low_resource", action='store_true', default=False) |
|
parser.add_argument("--debug", action="store_true", default=False) |
|
|
|
args = parser.parse_args() |
|
|
|
model = SALMONN( |
|
ckpt=args.ckpt_path, |
|
whisper_path=args.whisper_path, |
|
beats_path=args.beats_path, |
|
vicuna_path=args.vicuna_path |
|
).to(torch.float16).cuda() |
|
|
|
prompt = 'First describe the music in general in terms of mood, theme, tempo, melody, instruments and chord progression. Then provide a detailed music analysis by describing each functional segment and its time boundaries.' |
|
prompt_tmp = 'This is a Pop music of 69 beat-per-minute (BPM). First describe the music in general in terms of mood, theme, tempo, melody, instruments and chord progression. Then provide a detailed music analysis by describing each functional segment and its time boundaries. Please note that the music boundaries are [0, 41, 58, 83, 100].' |
|
model.eval() |
|
while True: |
|
print("=====================================") |
|
wav_path = input("Your Wav Path:\n") |
|
prompt = input("Your Prompt:\n") |
|
try: |
|
print("Output:") |
|
|
|
with torch.cuda.amp.autocast(dtype=torch.float16): |
|
print(model.generate(wav_path, prompt=prompt, repetition_penalty=1.5, num_beams=10, top_p=.7, temperature=.2)[0]) |
|
except Exception as e: |
|
print(e) |
|
if args.debug: |
|
import pdb |
|
|
|
pdb.set_trace() |
|
|