# Copyright (2023) Tsinghua University, Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import soundfile as sf import torch.nn as nn import torch.nn.functional as F from peft import LoraConfig, TaskType, get_peft_model from transformers import ( WhisperFeatureExtractor, WhisperModel, # LlamaForCausalLM, LlamaTokenizer ) from modeling_llama import LlamaForCausalLM import librosa from beats.BEATs import BEATsConfig, BEATs from qformer.Qformer import BertConfig, BertLMHeadModel from typing import List, Optional, Tuple, Union IGNORE_INDEX = -100 class SALMONN(nn.Module): def __init__(self, ckpt, whisper_path, beats_path, vicuna_path, speech_qformer_token_num=1, speech_qformer_layer=2, lora=True, lora_alpha=32, lora_rank=8, lora_dropout=0.1, second_per_frame=0.333333, second_stride=0.333333, compute_dtype=torch.float16): super().__init__() # feature_extractor self.feature_extractor = WhisperFeatureExtractor.from_pretrained(whisper_path) # whisper self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder for name, param in self.speech_encoder.named_parameters(): param.requires_grad = False self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model) print('Whisper model loaded ........') # beats self.beats_ckpt = beats_path beats_checkpoint = torch.load(self.beats_ckpt, map_location='cpu') beats = BEATs(BEATsConfig(beats_checkpoint['cfg'])) beats.load_state_dict(beats_checkpoint['model']) self.beats = beats for name, param in self.beats.named_parameters(): param.requires_grad = False self.beats.eval() self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim) print('Beats model loaded ........') # init speech Qformer self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer( speech_qformer_token_num, self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim, speech_qformer_layer, ) self.second_per_frame = second_per_frame self.second_stride = second_stride print('Qformer model initialised ........') # vicuna self.llama_model = LlamaForCausalLM.from_pretrained(vicuna_path, torch_dtype=compute_dtype) self.config = self.llama_model.config print('Vicuna model loaded ........') # lora self.lora = lora if lora: target_modules = None self.peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, target_modules=target_modules, r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) self.llama_model = get_peft_model(self.llama_model, self.peft_config) print('Added LoRA ........') # tokenizer self.tokenizer = LlamaTokenizer.from_pretrained(vicuna_path, use_fast=False) self.tokenizer.add_special_tokens({'pad_token': '[PAD]'}) self.tokenizer.padding_side = "right" # proj self.speech_llama_proj = nn.Linear(self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size) # load ckpt print('Loading Parameters ........') ckpt_dict = torch.load(ckpt, map_location='cpu') if 'model' in ckpt_dict: ckpt_dict = ckpt_dict['model'] for name, param in ckpt_dict.items(): if name in self.state_dict(): print('Loaded:', name) self.load_state_dict(ckpt_dict, strict=False) def forward( self, input_ids, labels, speeches, audios, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): speech_embeds, sources, targets = [], [], [] for speech_embed, audio_embed, input_id, label in zip(speeches, audios, input_ids, labels): speech_embed, audio_embed = speech_embed.to('cuda'), audio_embed.to('cuda') # auditory embeds speech_embed = self.ln_speech(speech_embed) audio_embed = self.ln_audio(audio_embed) audio_embed = F.pad(audio_embed, (0, 0, 0, speech_embed.size(1) - audio_embed.size(1))) speech_embed = torch.cat([speech_embed, audio_embed], dim=-1) # split frames B, T, C = speech_embed.shape kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0) kernel, stride = (1, kernel), (1, stride) speech_embeds_tr = speech_embed.transpose(1, 2).unsqueeze(2) speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) _, _, L = speech_embeds_overlap.shape speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L) speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1]) speech_embed = speech_embeds_overlap.reshape(-1, kernel[1], C) speech_atts = torch.ones(speech_embed.size()[:-1], dtype=torch.long, device=speech_embed.device) # Qformer query_tokens = self.speech_query_tokens.expand(speech_embed.shape[0], -1, -1) query_output = self.speech_Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=speech_embed, encoder_attention_mask=speech_atts, return_dict=True, use_cache=False ) speech_embed = self.speech_llama_proj(query_output.last_hidden_state) speech_embed = speech_embed.view(B, -1, speech_embed.size(2)).contiguous() sources.append( torch.concat([ torch.LongTensor([self.tokenizer.bos_token_id]).to(input_id[0].device), input_id[0], torch.LongTensor([self.tokenizer.bos_token_id] * speech_embed.shape[1]).to(input_id[0].device), input_id[1], torch.LongTensor([self.tokenizer.eos_token_id]).to(input_id[0].device), ]) ) targets.append( torch.concat([ torch.LongTensor([IGNORE_INDEX]).to(label[0].device), label[0], torch.LongTensor([IGNORE_INDEX] * speech_embed.shape[1]).to(label[0].device), label[1], torch.LongTensor([self.tokenizer.eos_token_id]).to(label[0].device), ]) ) speech_embeds.append(speech_embed) start_length = len(input_ids[0][0]) + 1 # USER: speech_embeds prompt\nASSISTANT: PADDING_TOKEN = 0 embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens input_ids = torch.nn.utils.rnn.pad_sequence(sources, batch_first=True, padding_value=PADDING_TOKEN) labels = torch.nn.utils.rnn.pad_sequence(targets, batch_first=True, padding_value=PADDING_TOKEN) attention_mask = input_ids.ne(PADDING_TOKEN) inputs_embeds = [] for input_id, speech_embed in zip(input_ids, speech_embeds): left_embeds = embed_tokens(input_id[:start_length]) right_embeds = embed_tokens(input_id[start_length + speech_embed.shape[1]:]) concat_tensor = torch.concat([left_embeds, speech_embed[0], right_embeds], dim=0).contiguous() inputs_embeds.append(concat_tensor) inputs_embeds = torch.stack(inputs_embeds) return self.llama_model.forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=False, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def generate( self, wav_path, prompt, prompt_pattern="USER: {}\nASSISTANT:", device='cuda:0', max_length=2048, num_beams=4, do_sample=True, min_length=1, top_p=0.9, top_k=50, repetition_penalty=1.0, length_penalty=1.0, temperature=1.0, bdr=(0, 240), num_return_sequences=1 ): # read wav wav, sr = sf.read(wav_path) if len(wav.shape) == 2: wav = wav[:, 0] wav = wav[int(bdr[0] * sr): int(bdr[1] * sr)] if sr != 16000: wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft") # whisper spectrogram = self.feature_extractor(wav, return_tensors="pt", sampling_rate=16000).input_features.to( device) # [1, 80, 3000] speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state # beats raw_wav = torch.from_numpy(wav).to(device).unsqueeze(0) audio_padding_mask = torch.zeros(raw_wav.shape, device=device).bool() audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True) # auditory embeds speech_embeds = self.ln_speech(speech_embeds) audio_embeds = self.ln_audio(audio_embeds) audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1))) speech_embeds = torch.cat([speech_embeds, audio_embeds], dim=-1) # split frames B, T, C = speech_embeds.shape kernel, stride = round(T * self.second_per_frame / 30.0), round(T * self.second_stride / 30.0) kernel, stride = (1, kernel), (1, stride) speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2) speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) _, _, L = speech_embeds_overlap.shape speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L) speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1]) speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C) speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device) # Qformer query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1) query_output = self.speech_Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=speech_embeds, encoder_attention_mask=speech_atts, return_dict=True, ) speech_embeds = self.speech_llama_proj(query_output.last_hidden_state) speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous() # USER: speech_embeds prompt\nASSISTANT: embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens prompt_left, prompts_right = prompt_pattern.format(prompt).split('') prompt_left_ids = self.tokenizer(prompt_left, return_tensors="pt", add_special_tokens=False).to( speech_embeds.device).input_ids prompt_left_embeds = embed_tokens(prompt_left_ids) prompt_right_ids = self.tokenizer(prompts_right, return_tensors="pt", add_special_tokens=False).to( speech_embeds.device).input_ids prompt_right_embeds = embed_tokens(prompt_right_ids) bos_embeds = self.llama_model.model.embed_tokens( torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id ) if not self.lora else self.llama_model.model.model.embed_tokens( torch.ones([1, 1], dtype=torch.long, device=device) * self.tokenizer.bos_token_id ) embeds = torch.cat([bos_embeds, prompt_left_embeds, speech_embeds, prompt_right_embeds], dim=1) atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device) # generate output = self.llama_model.generate( inputs_embeds=embeds, max_length=max_length, num_beams=num_beams, do_sample=do_sample, min_length=min_length, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature, num_return_sequences=num_return_sequences, attention_mask=atts, bos_token_id=self.tokenizer.bos_token_id, eos_token_id=self.tokenizer.eos_token_id, pad_token_id=self.tokenizer.pad_token_id, # use_cache=False ) output_text = self.tokenizer.batch_decode(output, add_special_tokens=False, skip_special_tokens=True) # output_text = self.tokenizer.batch_decode(output) return output_text def init_speech_Qformer(self, num_query_token, speech_width, num_hidden_layers=2): encoder_config = BertConfig() encoder_config.num_hidden_layers = num_hidden_layers encoder_config.encoder_width = speech_width encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = 1 encoder_config.query_length = num_query_token Qformer = BertLMHeadModel(config=encoder_config) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) return Qformer, query_tokens