--- license: apache-2.0 tags: - automatic-speech-recognition - experiments/data/atcosim_uwb_atcc/train - generated_from_trainer metrics: - wer model-index: - name: 0.0ld_0.0ad_0.0attd_0.05fpd_0.075mtp_12mtl_0.0mfp_12mfl_1acc results: [] --- # 0.0ld_0.0ad_0.0attd_0.05fpd_0.075mtp_12mtl_0.0mfp_12mfl_1acc This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the EXPERIMENTS/DATA/ATCOSIM_UWB_ATCC/TRAIN - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.4042 - Wer: 0.1049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.63 | 500 | 2.2638 | 0.9359 | | 2.6089 | 1.27 | 1000 | 0.7277 | 0.2407 | | 2.6089 | 1.9 | 1500 | 0.5800 | 0.1745 | | 0.6019 | 2.53 | 2000 | 0.4887 | 0.1514 | | 0.6019 | 3.17 | 2500 | 0.4666 | 0.1421 | | 0.4722 | 3.8 | 3000 | 0.4426 | 0.1451 | | 0.4722 | 4.44 | 3500 | 0.4176 | 0.1248 | | 0.4278 | 5.07 | 4000 | 0.4365 | 0.1239 | | 0.4278 | 5.7 | 4500 | 0.3816 | 0.1177 | | 0.369 | 6.34 | 5000 | 0.4113 | 0.1172 | | 0.369 | 6.97 | 5500 | 0.3863 | 0.1230 | | 0.341 | 7.6 | 6000 | 0.3850 | 0.1116 | | 0.341 | 8.24 | 6500 | 0.4014 | 0.1141 | | 0.3119 | 8.87 | 7000 | 0.3953 | 0.1078 | | 0.3119 | 9.51 | 7500 | 0.4018 | 0.1080 | | 0.3008 | 10.14 | 8000 | 0.3964 | 0.1074 | | 0.3008 | 10.77 | 8500 | 0.3917 | 0.1078 | | 0.2741 | 11.41 | 9000 | 0.3961 | 0.1057 | | 0.2741 | 12.04 | 9500 | 0.3974 | 0.1053 | | 0.2531 | 12.67 | 10000 | 0.4042 | 0.1049 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2