Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,36 +1,31 @@
|
|
1 |
---
|
2 |
-
tags:
|
3 |
-
- unet
|
4 |
-
- pix2pix
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
##
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
30 |
-
model.eval()
|
31 |
-
```
|
32 |
-
## Model Architecture
|
33 |
-
UNet(
|
34 |
(encoder): Sequential(
|
35 |
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
36 |
(1): ReLU(inplace=True)
|
@@ -38,21 +33,14 @@ UNet(
|
|
38 |
(3): ReLU(inplace=True)
|
39 |
(4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
40 |
(5): ReLU(inplace=True)
|
41 |
-
(6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
42 |
-
(7): ReLU(inplace=True)
|
43 |
-
(8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
44 |
-
(9): ReLU(inplace=True)
|
45 |
)
|
46 |
(decoder): Sequential(
|
47 |
-
(0): ConvTranspose2d(
|
48 |
(1): ReLU(inplace=True)
|
49 |
-
(2): ConvTranspose2d(
|
50 |
(3): ReLU(inplace=True)
|
51 |
-
(4): ConvTranspose2d(
|
52 |
-
(5):
|
53 |
-
(6): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
54 |
-
(7): ReLU(inplace=True)
|
55 |
-
(8): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
56 |
-
(9): Tanh()
|
57 |
)
|
58 |
-
)
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- unet
|
4 |
+
- pix2pix
|
5 |
+
library_name: pytorch
|
6 |
+
---
|
7 |
+
|
8 |
+
# Pix2Pix UNet Model
|
9 |
+
|
10 |
+
## Model Description
|
11 |
+
Custom UNet model for Pix2Pix image translation.
|
12 |
+
- Image Size: 256
|
13 |
+
- Model Type: Small (256)
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
```python
|
18 |
+
import torch
|
19 |
+
from small_256_model import UNet as small_UNet
|
20 |
+
from big_1024_model import UNet as big_UNet
|
21 |
+
|
22 |
+
# Load the model
|
23 |
+
checkpoint = torch.load('model_weights.pth')
|
24 |
+
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
|
25 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
26 |
+
model.eval()
|
27 |
+
Model Architecture
|
28 |
+
UNet(
|
|
|
|
|
|
|
|
|
|
|
29 |
(encoder): Sequential(
|
30 |
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
31 |
(1): ReLU(inplace=True)
|
|
|
33 |
(3): ReLU(inplace=True)
|
34 |
(4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
35 |
(5): ReLU(inplace=True)
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
(decoder): Sequential(
|
38 |
+
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
39 |
(1): ReLU(inplace=True)
|
40 |
+
(2): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
41 |
(3): ReLU(inplace=True)
|
42 |
+
(4): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
43 |
+
(5): Tanh()
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
+
)
|
46 |
+
|