mjkmain commited on
Commit
cd2ad38
·
verified ·
1 Parent(s): f10ce23

Upload KORMo-10B base model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
_configuration_kormo.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from transformers.modeling_rope_utils import rope_config_validation
3
+
4
+ class KORMoConfig(PretrainedConfig):
5
+ model_type = "kormo"
6
+ keys_to_ignore_at_inference = ["past_key_values"]
7
+ base_model_tp_plan = {
8
+ "layers.*.self_attn.q_proj": "colwise",
9
+ "layers.*.self_attn.k_proj": "colwise",
10
+ "layers.*.self_attn.v_proj": "colwise",
11
+ "layers.*.self_attn.o_proj": "rowwise",
12
+ "layers.*.mlp.gate_proj": "colwise",
13
+ "layers.*.mlp.up_proj": "colwise",
14
+ "layers.*.mlp.down_proj": "rowwise",
15
+ }
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_size=112576,
20
+ hidden_size=6144,
21
+ intermediate_size=21504,
22
+ num_hidden_layers=48,
23
+ num_attention_heads=40,
24
+ num_key_value_heads=8,
25
+ hidden_act="silu",
26
+ max_position_embeddings=131072,
27
+ initializer_range=0.02,
28
+ rms_norm_eps=1e-05,
29
+ use_cache=True,
30
+ pad_token_id=None,
31
+ bos_token_id=0,
32
+ eos_token_id=1,
33
+ pretraining_tp=1,
34
+ tie_word_embeddings=False,
35
+ rope_theta=500000.0,
36
+ attention_bias=False,
37
+ attention_dropout=0.0,
38
+ rope_scaling=None,
39
+ mlp_bias=False,
40
+ head_dim=128,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.max_position_embeddings = max_position_embeddings
45
+ self.hidden_size = hidden_size
46
+ self.intermediate_size = intermediate_size
47
+ self.num_hidden_layers = num_hidden_layers
48
+ self.num_attention_heads = num_attention_heads
49
+
50
+ if num_key_value_heads is None:
51
+ num_key_value_heads = num_attention_heads
52
+
53
+ self.num_key_value_heads = num_key_value_heads
54
+ self.hidden_act = hidden_act
55
+ self.initializer_range = initializer_range
56
+ self.rms_norm_eps = rms_norm_eps
57
+ self.pretraining_tp = pretraining_tp
58
+ self.use_cache = use_cache
59
+ self.rope_theta = rope_theta
60
+ self.rope_scaling = rope_scaling
61
+ self.attention_bias = attention_bias
62
+ self.attention_dropout = attention_dropout
63
+ self.mlp_bias = mlp_bias
64
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
65
+ self.mask_type = None
66
+
67
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
68
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
69
+ rope_config_validation(self)
70
+
71
+ super().__init__(
72
+ pad_token_id=pad_token_id,
73
+ bos_token_id=bos_token_id,
74
+ eos_token_id=eos_token_id,
75
+ tie_word_embeddings=tie_word_embeddings,
76
+ **kwargs,
77
+ )
_modeling_kormo.py ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from transformers.activations import ACT2FN
7
+ from transformers.cache_utils import Cache, DynamicCache
8
+ from transformers.generation import GenerationMixin
9
+ from transformers.integrations import use_kernel_forward_from_hub
10
+ from transformers.masking_utils import create_causal_mask
11
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
12
+ from transformers.modeling_layers import GradientCheckpointingLayer
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPast,
15
+ CausalLMOutputWithPast,
16
+ )
17
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
18
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
19
+ from transformers.processing_utils import Unpack
20
+ from transformers.utils import can_return_tuple, logging
21
+ from ._configuration_kormo import KORMoConfig
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ @use_kernel_forward_from_hub("RMSNorm")
27
+ class RMSNorm(nn.Module):
28
+ """
29
+ KORMoRMSNorm is equivalent to T5LayerNorm
30
+ """
31
+ def __init__(self, hidden_size: int, eps: float = 1e-6):
32
+ super().__init__()
33
+ self.weight = nn.Parameter(torch.ones(hidden_size))
34
+ self.variance_epsilon = eps
35
+
36
+ def forward(self, hidden_states):
37
+ input_dtype = hidden_states.dtype
38
+ hidden_states = hidden_states.to(torch.float32)
39
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
40
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
41
+ return (self.weight * hidden_states).to(input_dtype)
42
+
43
+ def extra_repr(self):
44
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
45
+
46
+
47
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
48
+ """
49
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
50
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
51
+ """
52
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
53
+ if n_rep == 1:
54
+ return hidden_states
55
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
56
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
57
+
58
+ def eager_attention_forward(
59
+ module: nn.Module,
60
+ query: torch.Tensor,
61
+ key: torch.Tensor,
62
+ value: torch.Tensor,
63
+ attention_mask: Optional[torch.Tensor],
64
+ scaling: float,
65
+ dropout: float = 0.0,
66
+ **kwargs,
67
+ ):
68
+ key_states = repeat_kv(key, module.num_key_value_groups)
69
+ value_states = repeat_kv(value, module.num_key_value_groups)
70
+
71
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
72
+ if attention_mask is not None:
73
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
74
+ attn_weights = attn_weights + causal_mask
75
+
76
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
77
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
78
+ attn_output = torch.matmul(attn_weights, value_states)
79
+ attn_output = attn_output.transpose(1, 2).contiguous()
80
+
81
+ return attn_output, attn_weights
82
+
83
+
84
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
85
+ cos = cos.unsqueeze(unsqueeze_dim)
86
+ sin = sin.unsqueeze(unsqueeze_dim)
87
+ q_embed = (q * cos) + (rotate_half(q) * sin)
88
+ k_embed = (k * cos) + (rotate_half(k) * sin)
89
+ return q_embed.to(q.dtype), k_embed.to(k.dtype)
90
+
91
+
92
+ def rotate_half(x):
93
+ """Rotates half the hidden dims of the input."""
94
+ x1 = x[..., : x.shape[-1] // 2]
95
+ x2 = x[..., x.shape[-1] // 2 :]
96
+ return torch.cat((-x2, x1), dim=-1)
97
+
98
+ class Attention(nn.Module):
99
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
100
+
101
+ def __init__(self, config: KORMoConfig, layer_idx: int):
102
+ super().__init__()
103
+ self.config = config
104
+ self.layer_idx = layer_idx
105
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
106
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
107
+ self.scaling = self.head_dim**-0.5
108
+ self.attention_dropout = config.attention_dropout
109
+ self.is_causal = True
110
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
111
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
112
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
113
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
114
+
115
+ def forward(
116
+ self,
117
+ hidden_states: torch.Tensor,
118
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
119
+ attention_mask: Optional[torch.Tensor],
120
+ past_key_value: Optional[Cache] = None,
121
+ cache_position: Optional[torch.LongTensor] = None,
122
+ **kwargs,
123
+ ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
124
+ input_shape = hidden_states.shape[:-1]
125
+ hidden_shape = (*input_shape, -1, self.head_dim)
126
+
127
+ query_states = self.q_proj(hidden_states)
128
+ key_states = self.k_proj(hidden_states)
129
+ value_states = self.v_proj(hidden_states)
130
+
131
+ query_states = query_states.view(hidden_shape).transpose(1, 2)
132
+ key_states = key_states.view(hidden_shape).transpose(1, 2)
133
+ value_states = value_states.view(hidden_shape).transpose(1, 2)
134
+
135
+ cos, sin = position_embeddings
136
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
137
+
138
+ if past_key_value is not None:
139
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
140
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
141
+
142
+ attention_interface: Callable = eager_attention_forward
143
+ if self.config._attn_implementation != "eager":
144
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
145
+
146
+ attn_output, attn_weights = attention_interface(
147
+ self,
148
+ query_states,
149
+ key_states,
150
+ value_states,
151
+ attention_mask,
152
+ dropout=0.0 if not self.training else self.attention_dropout,
153
+ scaling=self.scaling,
154
+ **kwargs,
155
+ )
156
+
157
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
158
+ attn_output = self.o_proj(attn_output)
159
+ return attn_output, attn_weights
160
+
161
+ @use_kernel_forward_from_hub("MLP")
162
+ class MLP(nn.Module):
163
+ def __init__(self, config):
164
+ super().__init__()
165
+ self.config = config
166
+ self.hidden_size = config.hidden_size
167
+ self.intermediate_size = config.intermediate_size
168
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
169
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
170
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
171
+ self.act_fn = ACT2FN[config.hidden_act]
172
+
173
+ def forward(self, x):
174
+ output = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
175
+ return output
176
+
177
+ class DecoderLayer(GradientCheckpointingLayer):
178
+ def __init__(self, config: KORMoConfig, layer_idx: int):
179
+ super().__init__()
180
+ self.hidden_size = config.hidden_size
181
+ self.self_attn = Attention(config=config, layer_idx=layer_idx)
182
+ self.mlp = MLP(config)
183
+ self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
184
+ self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
185
+
186
+ def forward(
187
+ self,
188
+ hidden_states: torch.Tensor,
189
+ attention_mask: Optional[torch.Tensor] = None,
190
+ position_ids: Optional[torch.LongTensor] = None,
191
+ past_key_value: Optional[Cache] = None,
192
+ output_attentions: Optional[bool] = False,
193
+ use_cache: Optional[bool] = False,
194
+ cache_position: Optional[torch.LongTensor] = None,
195
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
196
+ **kwargs: Unpack[FlashAttentionKwargs],
197
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
198
+ residual = hidden_states
199
+ hidden_states = self.pre_attention_layernorm(hidden_states)
200
+
201
+ # Self Attention
202
+ hidden_states, self_attn_weights = self.self_attn(
203
+ hidden_states=hidden_states,
204
+ attention_mask=attention_mask,
205
+ position_ids=position_ids,
206
+ past_key_value=past_key_value,
207
+ output_attentions=output_attentions,
208
+ use_cache=use_cache,
209
+ cache_position=cache_position,
210
+ position_embeddings=position_embeddings,
211
+ **kwargs,
212
+ )
213
+ hidden_states = residual + hidden_states
214
+
215
+ # MLP layer
216
+ residual = hidden_states
217
+ hidden_states = self.pre_mlp_layernorm(hidden_states)
218
+ hidden_states = self.mlp(hidden_states)
219
+ hidden_states = residual + hidden_states
220
+
221
+ outputs = (hidden_states,)
222
+ if output_attentions:
223
+ outputs += (self_attn_weights,)
224
+
225
+ return outputs
226
+
227
+
228
+ class RotaryEmbedding(nn.Module):
229
+ def __init__(self, config: KORMoConfig, device=None):
230
+ super().__init__()
231
+ # BC: "rope_type" was originally "type"
232
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
233
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
234
+ else:
235
+ self.rope_type = "default"
236
+ self.max_seq_len_cached = config.max_position_embeddings
237
+ self.original_max_seq_len = config.max_position_embeddings
238
+
239
+ self.config = config
240
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
241
+
242
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
243
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
244
+ self.original_inv_freq = self.inv_freq
245
+
246
+ @torch.no_grad()
247
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
248
+ def forward(self, x, position_ids):
249
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
250
+ position_ids_expanded = position_ids[:, None, :].float()
251
+
252
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
253
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
254
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
255
+ emb = torch.cat((freqs, freqs), dim=-1)
256
+ cos = emb.cos() * self.attention_scaling
257
+ sin = emb.sin() * self.attention_scaling
258
+ return cos, sin
259
+
260
+
261
+
262
+
263
+
264
+
265
+ class KORMoPreTrainedModel(PreTrainedModel):
266
+ config_class = KORMoConfig
267
+ base_model_prefix = "model"
268
+ supports_gradient_checkpointing = True
269
+ _no_split_modules = ["DecoderLayer"]
270
+ _skip_keys_device_placement = ["past_key_values"]
271
+ _supports_flash_attn_3 = True
272
+ _supports_flash_attn_2 = True
273
+ _supports_sdpa = True
274
+ _supports_flex_attn = True
275
+ _supports_cache_class = True
276
+ _supports_quantized_cache = True
277
+ _supports_static_cache = True
278
+ _supports_attention_backend = True
279
+
280
+ def _init_weights(self, module):
281
+ std = self.config.initializer_range
282
+ if isinstance(module, nn.Linear):
283
+ module.weight.data.normal_(mean=0.0, std=std)
284
+ if module.bias is not None:
285
+ module.bias.data.zero_()
286
+ elif isinstance(module, nn.Embedding):
287
+ module.weight.data.normal_(mean=0.0, std=std)
288
+ if module.padding_idx is not None:
289
+ module.weight.data[module.padding_idx].zero_()
290
+ elif isinstance(module, RMSNorm):
291
+ module.weight.data.fill_(1.0)
292
+
293
+
294
+ class KORMoModel(KORMoPreTrainedModel):
295
+ def __init__(self, config: KORMoConfig):
296
+ super().__init__(config)
297
+ self.padding_idx = config.pad_token_id
298
+ self.vocab_size = config.vocab_size
299
+
300
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
301
+ self.layers = nn.ModuleList(
302
+ [DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
303
+ )
304
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
305
+ self.rotary_emb = RotaryEmbedding(config=config)
306
+ self.gradient_checkpointing = False
307
+
308
+ # Initialize weights and apply final processing
309
+ self.post_init()
310
+
311
+ def get_input_embeddings(self):
312
+ return self.embed_tokens
313
+
314
+ def set_input_embeddings(self, value):
315
+ self.embed_tokens = value
316
+
317
+ @can_return_tuple
318
+ def forward(
319
+ self,
320
+ input_ids: torch.LongTensor = None,
321
+ attention_mask: Optional[torch.Tensor] = None,
322
+ position_ids: Optional[torch.LongTensor] = None,
323
+ past_key_values: Optional[Cache] = None,
324
+ inputs_embeds: Optional[torch.FloatTensor] = None,
325
+ use_cache: Optional[bool] = None,
326
+ output_attentions: Optional[bool] = None,
327
+ output_hidden_states: Optional[bool] = None,
328
+ cache_position: Optional[torch.LongTensor] = None,
329
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
330
+ ) -> BaseModelOutputWithPast:
331
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
332
+ output_hidden_states = (
333
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
334
+ )
335
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
336
+
337
+ if (input_ids is None) ^ (inputs_embeds is not None):
338
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
339
+
340
+ if self.gradient_checkpointing and self.training and use_cache:
341
+ logger.warning_once(
342
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
343
+ )
344
+ use_cache = False
345
+
346
+ if not isinstance(past_key_values, (type(None), Cache)):
347
+ raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
348
+
349
+ if inputs_embeds is None:
350
+ inputs_embeds = self.embed_tokens(input_ids)
351
+
352
+ if use_cache and past_key_values is None:
353
+ past_key_values = DynamicCache()
354
+
355
+ if cache_position is None:
356
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
357
+ cache_position = torch.arange(
358
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
359
+ )
360
+
361
+ if position_ids is None:
362
+ position_ids = cache_position.unsqueeze(0)
363
+
364
+ if self.config._attn_implementation == "flash_attention_3_doc":
365
+ ### TODO: 수정필요
366
+ causal_mask = attention_mask
367
+ else:
368
+ causal_mask = create_causal_mask(
369
+ config=self.config,
370
+ input_embeds=inputs_embeds,
371
+ attention_mask=attention_mask,
372
+ cache_position=cache_position,
373
+ past_key_values=past_key_values,
374
+ position_ids=position_ids,
375
+ )
376
+
377
+
378
+ hidden_states = inputs_embeds
379
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
380
+
381
+ all_hidden_states = () if output_hidden_states else None
382
+ all_self_attns = () if output_attentions else None
383
+
384
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
385
+ if output_hidden_states:
386
+ all_hidden_states += (hidden_states,)
387
+
388
+
389
+ layer_outputs = decoder_layer(
390
+ hidden_states,
391
+ attention_mask=causal_mask,
392
+ position_ids=position_ids,
393
+ past_key_value=past_key_values,
394
+ output_attentions=output_attentions,
395
+ use_cache=use_cache,
396
+ cache_position=cache_position,
397
+ position_embeddings=position_embeddings,
398
+ **flash_attn_kwargs,
399
+ )
400
+
401
+ hidden_states = layer_outputs[0]
402
+
403
+ if output_attentions:
404
+ all_self_attns += (layer_outputs[1],)
405
+
406
+ hidden_states = self.norm(hidden_states)
407
+
408
+ # add hidden states from the last decoder layer
409
+ if output_hidden_states:
410
+ all_hidden_states += (hidden_states,)
411
+
412
+ return BaseModelOutputWithPast(
413
+ last_hidden_state=hidden_states,
414
+ past_key_values=past_key_values if use_cache else None,
415
+ hidden_states=all_hidden_states,
416
+ attentions=all_self_attns,
417
+ )
418
+
419
+
420
+ class KORMoForCausalLM(KORMoPreTrainedModel, GenerationMixin):
421
+ _tied_weights_keys = ["lm_head.weight"]
422
+ _tp_plan = {"lm_head": "colwise_rep"}
423
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
424
+
425
+ def __init__(self, config):
426
+ super().__init__(config)
427
+ self.model = KORMoModel(config)
428
+ self.vocab_size = config.vocab_size
429
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
430
+ self.post_init()
431
+
432
+ def get_input_embeddings(self):
433
+ return self.model.embed_tokens
434
+
435
+ def set_input_embeddings(self, value):
436
+ self.model.embed_tokens = value
437
+
438
+ def get_output_embeddings(self):
439
+ return self.lm_head
440
+
441
+ def set_output_embeddings(self, new_embeddings):
442
+ self.lm_head = new_embeddings
443
+
444
+ def set_decoder(self, decoder):
445
+ self.model = decoder
446
+
447
+ def get_decoder(self):
448
+ return self.model
449
+
450
+ @can_return_tuple
451
+ def forward(
452
+ self,
453
+ input_ids: torch.LongTensor = None,
454
+ attention_mask: Optional[torch.Tensor] = None,
455
+ position_ids: Optional[torch.LongTensor] = None,
456
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
457
+ inputs_embeds: Optional[torch.FloatTensor] = None,
458
+ labels: Optional[torch.LongTensor] = None,
459
+ use_cache: Optional[bool] = None,
460
+ output_attentions: Optional[bool] = None,
461
+ output_hidden_states: Optional[bool] = None,
462
+ cache_position: Optional[torch.LongTensor] = None,
463
+ logits_to_keep: int = 0,
464
+ **kwargs,
465
+ ) -> CausalLMOutputWithPast:
466
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
467
+ output_hidden_states = (
468
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
469
+ )
470
+
471
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
472
+ outputs: BaseModelOutputWithPast = self.model(
473
+ input_ids=input_ids,
474
+ attention_mask=attention_mask,
475
+ position_ids=position_ids,
476
+ past_key_values=past_key_values,
477
+ inputs_embeds=inputs_embeds,
478
+ use_cache=use_cache,
479
+ output_attentions=output_attentions,
480
+ output_hidden_states=output_hidden_states,
481
+ cache_position=cache_position,
482
+ **kwargs,
483
+ )
484
+
485
+ hidden_states = outputs.last_hidden_state
486
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
487
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
488
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
489
+
490
+ loss = None
491
+ if labels is not None:
492
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
493
+
494
+ return CausalLMOutputWithPast(
495
+ loss=loss,
496
+ logits=logits,
497
+ past_key_values=outputs.past_key_values,
498
+ hidden_states=outputs.hidden_states,
499
+ attentions=outputs.attentions,
500
+ )
501
+
502
+
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "KORMoForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "_configuration_kormo.KORMoConfig",
9
+ "AutoModelForCausalLM": "_modeling_kormo.KORMoForCausalLM"
10
+ },
11
+ "bos_token_id": 125030,
12
+ "dtype": "bfloat16",
13
+ "eos_token_id": 125031,
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 16384,
19
+ "mask_type": null,
20
+ "max_position_embeddings": 131072,
21
+ "mlp_bias": false,
22
+ "model_type": "kormo",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 40,
25
+ "num_key_value_heads": 8,
26
+ "pretrain_tp": 1,
27
+ "pretraining_tp": 1,
28
+ "rms_norm_eps": 1e-05,
29
+ "rope_scaling": null,
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": false,
32
+ "tie_word_embeddins": false,
33
+ "transformers_version": "4.57.0",
34
+ "use_cache": true,
35
+ "vocab_size": 125184
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 125030,
4
+ "eos_token_id": 125031,
5
+ "transformers_version": "4.57.0"
6
+ }
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b2aa7d4d965fa4afe72d16aa6e296b2c796e27edf4fe90d92d896915ff6ab69
3
+ size 4968292992
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d116cb4359cbb2e9735d70dc81498f51f6b1312b1552cf565abf79c64aff1629
3
+ size 4899121536
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a714968a85d39052b5edf68e59238557c8511cc35a89c10c8debb57d05dfcab
3
+ size 4999784848
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a970caf674ee510f15d668f02587519c49b6e0b22c8c7cf7391d7072aff5c1b4
3
+ size 4999784848
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e291b5a4251a572b58bbd9a7bb4f9586a730dd2315ef18bef8c21997769ce2dd
3
+ size 1646306904
model.safetensors.index.json ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 10756624384,
4
+ "total_size": 21513248768
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00005-of-00005.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
75
+ "model.layers.15.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
76
+ "model.layers.15.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
84
+ "model.layers.16.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
85
+ "model.layers.16.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
93
+ "model.layers.17.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
94
+ "model.layers.17.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
105
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
106
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
107
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
165
+ "model.layers.24.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
166
+ "model.layers.24.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
174
+ "model.layers.25.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
175
+ "model.layers.25.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
176
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
177
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
178
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
179
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
183
+ "model.layers.26.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
184
+ "model.layers.26.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
185
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
186
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
187
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
188
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
192
+ "model.layers.27.pre_attention_layernorm.weight": "model-00003-of-00005.safetensors",
193
+ "model.layers.27.pre_mlp_layernorm.weight": "model-00003-of-00005.safetensors",
194
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
195
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
196
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
197
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
204
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
205
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
206
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
255
+ "model.layers.33.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
256
+ "model.layers.33.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
264
+ "model.layers.34.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
265
+ "model.layers.34.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
266
+ "model.layers.34.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
267
+ "model.layers.34.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
268
+ "model.layers.34.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
269
+ "model.layers.34.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
273
+ "model.layers.35.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
274
+ "model.layers.35.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
275
+ "model.layers.35.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
276
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
277
+ "model.layers.35.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
278
+ "model.layers.35.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
282
+ "model.layers.36.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
283
+ "model.layers.36.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
284
+ "model.layers.36.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
285
+ "model.layers.36.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
286
+ "model.layers.36.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
287
+ "model.layers.36.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
291
+ "model.layers.37.pre_attention_layernorm.weight": "model-00004-of-00005.safetensors",
292
+ "model.layers.37.pre_mlp_layernorm.weight": "model-00004-of-00005.safetensors",
293
+ "model.layers.37.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
294
+ "model.layers.37.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
295
+ "model.layers.37.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
296
+ "model.layers.37.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
300
+ "model.layers.38.pre_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.pre_mlp_layernorm.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
303
+ "model.layers.38.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
304
+ "model.layers.38.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
305
+ "model.layers.38.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.pre_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.pre_mlp_layernorm.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
336
+ "model.layers.6.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
337
+ "model.layers.6.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
345
+ "model.layers.7.pre_attention_layernorm.weight": "model-00001-of-00005.safetensors",
346
+ "model.layers.7.pre_mlp_layernorm.weight": "model-00001-of-00005.safetensors",
347
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
348
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
349
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
350
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
357
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
359
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.pre_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.pre_mlp_layernorm.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
369
+ "model.norm.weight": "model-00005-of-00005.safetensors"
370
+ }
371
+ }