Densenet121 / config.json
Firoj112's picture
Upload VQA model in safetensors format after training
a40c088 verified
{
"cnn_type": "densenet121",
"config_dict": {
"answer_spaces": {
"choice_multiple": {
"barretts": 3,
"biopsy forceps": 14,
"cecum": 8,
"hemorrhoids": 5,
"ileum": 6,
"injection needle": 13,
"metal clip": 11,
"none": 15,
"oesophagitis": 0,
"polyp": 4,
"polyp snare": 12,
"pylorus": 9,
"short-segment barretts": 2,
"tube": 10,
"ulcerative colitis": 1,
"z-line": 7
},
"choice_single": {
"11-20mm": 8,
"5-10mm": 7,
"<5mm": 6,
">20": 10,
">20mm": 9,
"capsule endoscopy": 3,
"colonoscopy": 4,
"gastroscopy": 5,
"none": 11,
"paris iia": 1,
"paris ip": 0,
"paris is": 2
},
"color": {
"black": 3,
"blue": 8,
"brown": 11,
"flesh": 1,
"green": 10,
"grey": 9,
"landmark:grey": 0,
"none": 13,
"orange": 4,
"pink": 2,
"purple": 12,
"red": 5,
"white": 6,
"yellow": 7
},
"location": {
"center": 4,
"center-left": 3,
"center-right": 5,
"lower-center": 7,
"lower-left": 6,
"lower-right": 8,
"lower-rigth": 8,
"none": 9,
"upper-center": 1,
"upper-left": 0,
"upper-right": 2
},
"numerical": {
"0": 0,
"1": 1,
"10": 10,
"11": 11,
"12": 12,
"13": 13,
"14": 14,
"15": 15,
"16": 16,
"2": 2,
"3": 3,
"4": 4,
"5": 5,
"6": 6,
"7": 7,
"8": 8,
"9": 9
},
"yesno": {
"no": 1,
"not relevant": 2,
"yes": 0
}
},
"batch_size": 32,
"captions_file": "data/kvasir-captions.json",
"checkpoint_path": "artifacts/vqa_cnn_bilstm.pth",
"cnn_out_dim": 512,
"dataset_name": "SimulaMet-HOST/Kvasir-VQA",
"device": "cuda",
"embedding_dim": 128,
"hidden_dim": 256,
"img_dir": "data/images",
"img_size": [
224,
224
],
"jsonl_file": "data/kvasir-vqa.jsonl",
"learning_rate": 0.0001,
"max_seq_len": 20,
"num_epochs": 10,
"num_workers": 2,
"output_dir": "artifacts/output",
"patience": 5,
"question_types": {
"Are there any abnormalities in the image? Check all that are present.": "choice_multiple",
"Are there any anatomical landmarks in the image? Check all that are present.": "choice_multiple",
"Are there any instruments in the image? Check all that are present.": "choice_multiple",
"Does this image contain any finding?": "yesno",
"Have all polyps been removed?": "yesno",
"How many findings are present?": "numerical",
"How many instruments are in the image?": "numerical",
"How many instrumnets are in the image?": "numerical",
"How many polyps are in the image?": "numerical",
"Is there a green/black box artefact?": "yesno",
"Is there text?": "yesno",
"Is this finding easy to detect?": "yesno",
"What color is the abnormality? If more than one separate with ;": "color",
"What color is the anatomical landmark? If more than one separate with ;": "color",
"What is the size of the polyp?": "choice_single",
"What type of polyp is present?": "choice_single",
"What type of procedure is the image taken from?": "choice_single",
"Where in the image is the abnormality?": "location",
"Where in the image is the anatomical landmark?": "location",
"Where in the image is the instrument?": "location"
},
"seed": 42,
"test_split": 0.15,
"train_split": 0.7,
"use_multi_gpu": false,
"val_split": 0.15,
"vocab_size": 1399
},
"model_type": "vqa_cnn_bilstm",
"transformers_version": "4.51.3",
"vocab_size": 1399
}