File size: 1,416 Bytes
8204928
 
 
 
 
 
d66b293
06a49e4
8204928
 
 
d66b293
06a49e4
 
8204928
 
 
d66b293
06a49e4
d66b293
32b6c5f
d66b293
06a49e4
 
8204928
 
06a49e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import base64
import io
from PIL import Image
import torch
from diffusers import StableDiffusionImg2ImgPipeline

# Global pipeline instance
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = None

class EndpointHandler:
    def __init__(self, model_dir: str):
        # model_dir is ignored; HF clones your repo here
        pass

    def init(self):
        global pipe
        if pipe is None:
            # Load your InstantID img2img model
            pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
                "karthikAI/InstantID-i2i",
                revision="main",
                torch_dtype=torch.float16
            ).to(torch_device)

    def inference(self, model_inputs: dict) -> dict:
        # 1) decode base64 image
        b64 = model_inputs.get("inputs")
        if b64 is None:
            return {"error": "No 'inputs' key with base64 image provided."}
        img = Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")

        # 2) extract prompt
        prompt = model_inputs.get("parameters", {}).get("prompt", "")

        # 3) minimal call: prompt + image only
        out = pipe(prompt=prompt, image=img)
        result_img = out.images[0]

        # 4) encode output
        buf = io.BytesIO()
        result_img.save(buf, format="PNG")
        b64_out = base64.b64encode(buf.getvalue()).decode()
        return {"generated_image_base64": b64_out}