Upload 4 files
Browse files- config.json +5 -0
- handler.py +35 -0
- model_index.json +22 -0
- requirements.txt +6 -0
config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.16.1",
|
4 |
+
"pipeline_tag": "stable-diffusion-image-to-image"
|
5 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
6 |
+
|
7 |
+
pipe = None
|
8 |
+
|
9 |
+
class EndpointHandler:
|
10 |
+
def __init__(self):
|
11 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
def init(self):
|
14 |
+
global pipe
|
15 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
16 |
+
"InstantX/InstantID",
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
safety_checker=None
|
19 |
+
).to(self.device)
|
20 |
+
pipe.enable_attention_slicing()
|
21 |
+
|
22 |
+
def inference(self, model_inputs: dict) -> dict:
|
23 |
+
img_bytes = base64.b64decode(model_inputs.get("image_base64"))
|
24 |
+
init_image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
25 |
+
output = pipe(
|
26 |
+
prompt=model_inputs.get("prompt", ""),
|
27 |
+
image=init_image,
|
28 |
+
strength=float(model_inputs.get("strength", 0.75)),
|
29 |
+
guidance_scale=float(model_inputs.get("guidance_scale", 7.5)),
|
30 |
+
num_inference_steps=int(model_inputs.get("num_inference_steps", 50)),
|
31 |
+
)
|
32 |
+
sticker = output.images[0]
|
33 |
+
buf = io.BytesIO()
|
34 |
+
sticker.save(buf, format="PNG")
|
35 |
+
return {"generated_image_base64": base64.b64encode(buf.getvalue()).decode("utf-8")}
|
model_index.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusionImg2ImgPipeline",
|
3 |
+
"_diffusers_version": "0.16.1",
|
4 |
+
"components": {
|
5 |
+
"unet": {
|
6 |
+
"path": "diffusers/unet",
|
7 |
+
"type": ["diffusers", "UNet2DConditionModel"]
|
8 |
+
},
|
9 |
+
"vae": {
|
10 |
+
"path": "diffusers/vae",
|
11 |
+
"type": ["diffusers", "AutoencoderKL"]
|
12 |
+
},
|
13 |
+
"scheduler": {
|
14 |
+
"path": "diffusers/scheduler",
|
15 |
+
"type": ["diffusers", "DDIMScheduler"]
|
16 |
+
},
|
17 |
+
"tokenizer": {
|
18 |
+
"path": "tokenizer",
|
19 |
+
"type": ["transformers", "CLIPTokenizer"]
|
20 |
+
}
|
21 |
+
}
|
22 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
diffusers>=0.16.1
|
3 |
+
transformers>=4.30.0
|
4 |
+
huggingface_hub>=0.14.1
|
5 |
+
safetensors
|
6 |
+
Pillow
|