Keetawan commited on
Commit
2da5539
·
verified ·
1 Parent(s): bbc96b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -0
README.md CHANGED
@@ -71,3 +71,40 @@ The model is trained to classify the following plant diseases and conditions:
71
  40: "Tomato leaf with Tomato mosaic virus",
72
  41: "Healthy Tomato leaf"
73
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  40: "Tomato leaf with Tomato mosaic virus",
72
  41: "Healthy Tomato leaf"
73
  }
74
+ ```
75
+ ## Usage
76
+
77
+ You can use the `clip-vit-large-patch14-finetuned-disease` model to classify images of plant leaves and generate captions describing their health condition or any disease present. Below is an example of how you can use this model in Python using the Hugging Face Transformers library:
78
+
79
+ ```python
80
+ from transformers import CLIPProcessor, CLIPModel
81
+ from PIL import Image
82
+ import requests
83
+
84
+ # Load the model and processor
85
+ model = CLIPModel.from_pretrained("your_username/clip-vit-large-patch14-finetuned-disease")
86
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
87
+
88
+ # Load an image of a plant leaf
89
+ image_url = "https://example.com/path_to_your_image.jpg"
90
+ image = Image.open(requests.get(image_url, stream=True).raw)
91
+
92
+ # Prepare the image
93
+ inputs = processor(text=["Apple leaf with Apple scab", "Healthy Tomato leaf", ...], images=image, return_tensors="pt", padding=True)
94
+
95
+ # Get predictions
96
+ outputs = model(**inputs)
97
+ logits_per_image = outputs.logits_per_image # Image-text similarity score
98
+ probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
99
+
100
+ # Print the most likely label
101
+ predicted_label = probs.argmax().item()
102
+ labels = [
103
+ "Apple leaf with Apple scab",
104
+ "Apple leaf with Black rot",
105
+ ...
106
+ "Healthy Tomato leaf"
107
+ ]
108
+ print(f"Predicted label: {labels[predicted_label]}")
109
+ ```
110
+