Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
-
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
- text-generation-inference
|
@@ -9,14 +9,110 @@ tags:
|
|
9 |
- llama
|
10 |
- trl
|
11 |
base_model: unsloth/llama-3-8b-bnb-4bit
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
- **Developed by:** KillerShoaib
|
17 |
- **License:** apache-2.0
|
18 |
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
1 |
---
|
2 |
language:
|
3 |
+
- bn
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
- text-generation-inference
|
|
|
9 |
- llama
|
10 |
- trl
|
11 |
base_model: unsloth/llama-3-8b-bnb-4bit
|
12 |
+
datasets:
|
13 |
+
- iamshnoo/alpaca-cleaned-bengali
|
14 |
+
pipeline_tag: text-generation
|
15 |
---
|
16 |
|
17 |
+
|
18 |
+
# LLama-3 Bangla
|
19 |
+
|
20 |
+
<div align="center">
|
21 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/65ca6f0098a46a56261ac3ac/O1ATwhQt_9j59CSIylrVS.png" width="300"/>
|
22 |
+
|
23 |
+
</div>
|
24 |
|
25 |
- **Developed by:** KillerShoaib
|
26 |
- **License:** apache-2.0
|
27 |
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
|
28 |
+
- **Dataset used for finetuning :** iamshnoo/alpaca-cleaned-bengali
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
# Model Details
|
33 |
+
|
34 |
+
Llama 3 8 billion model was finetuned using **unsloth** package and in **4bit quantization** on a **cleaned Bangla alpaca** dataset. This is not the entire model but only **LoRA adapters**. The model is finetuned for **2 epoch** on a single T4 GPU.
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
# Run The Model
|
39 |
+
|
40 |
+
## FastLanguageModel from unsloth for 2x faster inference
|
41 |
+
|
42 |
+
```python
|
43 |
+
|
44 |
+
from unsloth import FastLanguageModel
|
45 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
46 |
+
model_name = "KillerShoaib/llama-3-8b-bangla-4bit",
|
47 |
+
max_seq_length = 2048,
|
48 |
+
dtype = None,
|
49 |
+
load_in_4bit = True,
|
50 |
+
)
|
51 |
+
FastLanguageModel.for_inference(model)
|
52 |
+
|
53 |
+
# alpaca_prompt for the model
|
54 |
+
alpaca_prompt = """Below is an instruction in bangla that describes a task, paired with an input also in bangla that provides further context. Write a response in bangla that appropriately completes the request.
|
55 |
+
|
56 |
+
### Instruction:
|
57 |
+
{}
|
58 |
+
|
59 |
+
### Input:
|
60 |
+
{}
|
61 |
+
|
62 |
+
### Response:
|
63 |
+
{}"""
|
64 |
+
|
65 |
+
# input with instruction and input
|
66 |
+
inputs = tokenizer(
|
67 |
+
[
|
68 |
+
alpaca_prompt.format(
|
69 |
+
"সুস্থ থাকার তিনটি উপায় বলুন", # instruction
|
70 |
+
"", # input
|
71 |
+
"", # output - leave this blank for generation!
|
72 |
+
)
|
73 |
+
], return_tensors = "pt").to("cuda")
|
74 |
+
|
75 |
+
# generating the output and decoding it
|
76 |
+
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True)
|
77 |
+
tokenizer.batch_decode(outputs)
|
78 |
+
```
|
79 |
+
|
80 |
+
## AutoModelForPeftCausalLM from Hugginface
|
81 |
+
|
82 |
+
```python
|
83 |
+
from peft import AutoPeftModelForCausalLM
|
84 |
+
from transformers import AutoTokenizer
|
85 |
+
load_in_4bit = True
|
86 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
87 |
+
"KillerShoaib/llama3-8b-4bit-bangla",
|
88 |
+
load_in_4bit = True,
|
89 |
+
)
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained("KillerShoaib/llama3-8b-4bit-bangla")
|
91 |
+
|
92 |
+
alpaca_prompt = """Below is an instruction in bangla that describes a task, paired with an input also in bangla that provides further context. Write a response in bangla that appropriately completes the request.
|
93 |
+
|
94 |
+
### Instruction:
|
95 |
+
{}
|
96 |
+
|
97 |
+
### Input:
|
98 |
+
{}
|
99 |
+
|
100 |
+
### Response:
|
101 |
+
{}"""
|
102 |
+
|
103 |
+
inputs = tokenizer(
|
104 |
+
[
|
105 |
+
alpaca_prompt.format(
|
106 |
+
"সুস্থ থাকার তিনটি উপায় বলুন", # instruction
|
107 |
+
"", # input
|
108 |
+
"", # output - leave this blank for generation!
|
109 |
+
)
|
110 |
+
], return_tensors = "pt").to("cuda")
|
111 |
+
|
112 |
+
outputs = model.generate(**inputs, max_new_tokens = 1024, use_cache = True)
|
113 |
+
tokenizer.batch_decode(outputs)
|
114 |
+
```
|
115 |
+
|
116 |
|
117 |
+
**AutoModelForPeftCausalLM can be hopelessly slow, since `4bit` model downloading is not supported. Use this only if you don't have unsloth installed**
|
118 |
|
|