Upload your_model_module.py with huggingface_hub
Browse files- your_model_module.py +149 -0
your_model_module.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import math
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
# Define the LayerNorm class
|
9 |
+
class LayerNorm(nn.Module):
|
10 |
+
def __init__(self, ndim, bias):
|
11 |
+
super().__init__()
|
12 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
13 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
14 |
+
def forward(self, x):
|
15 |
+
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
|
16 |
+
|
17 |
+
# Define the CausalSelfAttention class
|
18 |
+
class CausalSelfAttention(nn.Module):
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__()
|
21 |
+
assert config.n_embd % config.n_head == 0
|
22 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
23 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
24 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
25 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
26 |
+
self.n_head = config.n_head
|
27 |
+
self.n_embd = config.n_embd
|
28 |
+
self.flash = hasattr(F, 'scaled_dot_product_attention')
|
29 |
+
if not self.flash:
|
30 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
31 |
+
.view(1, 1, config.block_size, config.block_size))
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
B, T, C = x.size()
|
35 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
36 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
37 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
38 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
39 |
+
|
40 |
+
if self.flash:
|
41 |
+
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True)
|
42 |
+
else:
|
43 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
44 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
45 |
+
att = F.softmax(att, dim=-1)
|
46 |
+
att = self.attn_dropout(att)
|
47 |
+
y = att @ v
|
48 |
+
|
49 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
50 |
+
y = self.resid_dropout(self.c_proj(y))
|
51 |
+
return y
|
52 |
+
|
53 |
+
# Define the MLP class
|
54 |
+
class MLP(nn.Module):
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
58 |
+
self.gelu = nn.GELU()
|
59 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
60 |
+
self.dropout = nn.Dropout(config.dropout)
|
61 |
+
def forward(self, x):
|
62 |
+
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
|
63 |
+
|
64 |
+
# Define the Block class
|
65 |
+
class Block(nn.Module):
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln1 = LayerNorm(config.n_embd, config.bias)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln2 = LayerNorm(config.n_embd, config.bias)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln1(x))
|
74 |
+
x = x + self.mlp(self.ln2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
# Define the GPTConfig dataclass
|
78 |
+
@dataclass
|
79 |
+
class GPTConfig:
|
80 |
+
block_size: int
|
81 |
+
vocab_size: int
|
82 |
+
n_layer: int
|
83 |
+
n_head: int
|
84 |
+
n_embd: int
|
85 |
+
dropout: float = 0.0
|
86 |
+
bias: bool = True
|
87 |
+
|
88 |
+
# Define the GPT model class
|
89 |
+
class GPT(nn.Module):
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
self.transformer = nn.ModuleDict(dict(
|
94 |
+
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
95 |
+
wpe=nn.Embedding(config.block_size, config.n_embd),
|
96 |
+
drop=nn.Dropout(config.dropout),
|
97 |
+
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f=LayerNorm(config.n_embd, config.bias),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
self.transformer.wte.weight = self.lm_head.weight # weight tying
|
102 |
+
|
103 |
+
self.apply(self._init_weights)
|
104 |
+
for pn, p in self.named_parameters():
|
105 |
+
if pn.endswith('c_proj.weight'):
|
106 |
+
nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
111 |
+
if module.bias is not None:
|
112 |
+
nn.init.zeros_(module.bias)
|
113 |
+
elif isinstance(module, nn.Embedding):
|
114 |
+
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
115 |
+
|
116 |
+
def forward(self, idx, targets=None):
|
117 |
+
device = idx.device
|
118 |
+
b, t = idx.size()
|
119 |
+
assert t <= self.config.block_size
|
120 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
121 |
+
|
122 |
+
tok_emb = self.transformer.wte(idx)
|
123 |
+
pos_emb = self.transformer.wpe(pos)
|
124 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
125 |
+
for block in self.transformer.h:
|
126 |
+
x = block(x)
|
127 |
+
x = self.transformer.ln_f(x)
|
128 |
+
|
129 |
+
if targets is not None:
|
130 |
+
logits = self.lm_head(x)
|
131 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
132 |
+
return logits, loss
|
133 |
+
else:
|
134 |
+
logits = self.lm_head(x[:, [-1], :])
|
135 |
+
return logits, None
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
139 |
+
for _ in range(max_new_tokens):
|
140 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
141 |
+
logits, _ = self(idx_cond)
|
142 |
+
logits = logits[:, -1, :] / temperature
|
143 |
+
if top_k is not None:
|
144 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
145 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
146 |
+
probs = F.softmax(logits, dim=-1)
|
147 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
148 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
149 |
+
return idx
|