import torch import torch.nn as nn import torch.nn.functional as F import math from dataclasses import dataclass # Define the LayerNorm class class LayerNorm(nn.Module): def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, x): return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) # Define the CausalSelfAttention class class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.flash = hasattr(F, 'scaled_dot_product_attention') if not self.flash: self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) if self.flash: y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True) else: att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.resid_dropout(self.c_proj(y)) return y # Define the MLP class class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.gelu = nn.GELU() self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): return self.dropout(self.c_proj(self.gelu(self.c_fc(x)))) # Define the Block class class Block(nn.Module): def __init__(self, config): super().__init__() self.ln1 = LayerNorm(config.n_embd, config.bias) self.attn = CausalSelfAttention(config) self.ln2 = LayerNorm(config.n_embd, config.bias) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x # Define the GPTConfig dataclass @dataclass class GPTConfig: block_size: int vocab_size: int n_layer: int n_head: int n_embd: int dropout: float = 0.0 bias: bool = True # Define the GPT model class class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte=nn.Embedding(config.vocab_size, config.n_embd), wpe=nn.Embedding(config.block_size, config.n_embd), drop=nn.Dropout(config.dropout), h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f=LayerNorm(config.n_embd, config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight # weight tying self.apply(self._init_weights) for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer)) def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() assert t <= self.config.block_size pos = torch.arange(0, t, dtype=torch.long, device=device) tok_emb = self.transformer.wte(idx) pos_emb = self.transformer.wpe(pos) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if targets is not None: logits = self.lm_head(x) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) return logits, loss else: logits = self.lm_head(x[:, [-1], :]) return logits, None @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): for _ in range(max_new_tokens): idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] logits, _ = self(idx_cond) logits = logits[:, -1, :] / temperature if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx