Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1738343608.neptun-AX370 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000978_4005888_reward_27.484.pth +3 -0
- checkpoint_p0/checkpoint_000000714_2924544.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +274 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1738343608.neptun-AX370
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:16f2ed316281377c309cad1e0dc1733768962681732cd76947ab6189bbda5bdb
|
| 3 |
+
size 305246
|
README.md
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: sample-factory
|
| 3 |
+
tags:
|
| 4 |
+
- deep-reinforcement-learning
|
| 5 |
+
- reinforcement-learning
|
| 6 |
+
- sample-factory
|
| 7 |
+
model-index:
|
| 8 |
+
- name: APPO
|
| 9 |
+
results:
|
| 10 |
+
- task:
|
| 11 |
+
type: reinforcement-learning
|
| 12 |
+
name: reinforcement-learning
|
| 13 |
+
dataset:
|
| 14 |
+
name: doom_health_gathering_supreme
|
| 15 |
+
type: doom_health_gathering_supreme
|
| 16 |
+
metrics:
|
| 17 |
+
- type: mean_reward
|
| 18 |
+
value: 11.82 +/- 5.71
|
| 19 |
+
name: mean_reward
|
| 20 |
+
verified: false
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
| 24 |
+
|
| 25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
| 26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
## Downloading the model
|
| 30 |
+
|
| 31 |
+
After installing Sample-Factory, download the model with:
|
| 32 |
+
```
|
| 33 |
+
python -m sample_factory.huggingface.load_from_hub -r Kommunarus/rl_course_vizdoom_health_gathering_supreme
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Using the model
|
| 38 |
+
|
| 39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
| 40 |
+
```
|
| 41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
| 46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
| 47 |
+
|
| 48 |
+
## Training with this model
|
| 49 |
+
|
| 50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
| 51 |
+
```
|
| 52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
| 56 |
+
|
checkpoint_p0/best_000000978_4005888_reward_27.484.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:357f6d9e8e8e31853f3600bc18e820c4663bb177f70d29d9049408266cf45d38
|
| 3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000714_2924544.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e500e5adc210e20baa9dea94e8da260bde6c0172c7a86272f9e67b219b2fbd5
|
| 3 |
+
size 34929477
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa79e50e1a2a321502e752f207dd81d526be33add4083e26fe3dcde09c3505d5
|
| 3 |
+
size 34929477
|
config.json
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"help": false,
|
| 3 |
+
"algo": "APPO",
|
| 4 |
+
"env": "doom_health_gathering_supreme",
|
| 5 |
+
"experiment": "default_experiment",
|
| 6 |
+
"train_dir": "/home/neptun/PycharmProjects/RL_course/train_dir",
|
| 7 |
+
"restart_behavior": "resume",
|
| 8 |
+
"device": "gpu",
|
| 9 |
+
"seed": null,
|
| 10 |
+
"num_policies": 1,
|
| 11 |
+
"async_rl": true,
|
| 12 |
+
"serial_mode": false,
|
| 13 |
+
"batched_sampling": false,
|
| 14 |
+
"num_batches_to_accumulate": 2,
|
| 15 |
+
"worker_num_splits": 2,
|
| 16 |
+
"policy_workers_per_policy": 1,
|
| 17 |
+
"max_policy_lag": 1000,
|
| 18 |
+
"num_workers": 8,
|
| 19 |
+
"num_envs_per_worker": 4,
|
| 20 |
+
"batch_size": 1024,
|
| 21 |
+
"num_batches_per_epoch": 1,
|
| 22 |
+
"num_epochs": 1,
|
| 23 |
+
"rollout": 32,
|
| 24 |
+
"recurrence": 32,
|
| 25 |
+
"shuffle_minibatches": false,
|
| 26 |
+
"gamma": 0.99,
|
| 27 |
+
"reward_scale": 1.0,
|
| 28 |
+
"reward_clip": 1000.0,
|
| 29 |
+
"value_bootstrap": false,
|
| 30 |
+
"normalize_returns": true,
|
| 31 |
+
"exploration_loss_coeff": 0.001,
|
| 32 |
+
"value_loss_coeff": 0.5,
|
| 33 |
+
"kl_loss_coeff": 0.0,
|
| 34 |
+
"exploration_loss": "symmetric_kl",
|
| 35 |
+
"gae_lambda": 0.95,
|
| 36 |
+
"ppo_clip_ratio": 0.1,
|
| 37 |
+
"ppo_clip_value": 0.2,
|
| 38 |
+
"with_vtrace": false,
|
| 39 |
+
"vtrace_rho": 1.0,
|
| 40 |
+
"vtrace_c": 1.0,
|
| 41 |
+
"optimizer": "adam",
|
| 42 |
+
"adam_eps": 1e-06,
|
| 43 |
+
"adam_beta1": 0.9,
|
| 44 |
+
"adam_beta2": 0.999,
|
| 45 |
+
"max_grad_norm": 4.0,
|
| 46 |
+
"learning_rate": 0.0001,
|
| 47 |
+
"lr_schedule": "constant",
|
| 48 |
+
"lr_schedule_kl_threshold": 0.008,
|
| 49 |
+
"lr_adaptive_min": 1e-06,
|
| 50 |
+
"lr_adaptive_max": 0.01,
|
| 51 |
+
"obs_subtract_mean": 0.0,
|
| 52 |
+
"obs_scale": 255.0,
|
| 53 |
+
"normalize_input": true,
|
| 54 |
+
"normalize_input_keys": null,
|
| 55 |
+
"decorrelate_experience_max_seconds": 0,
|
| 56 |
+
"decorrelate_envs_on_one_worker": true,
|
| 57 |
+
"actor_worker_gpus": [],
|
| 58 |
+
"set_workers_cpu_affinity": true,
|
| 59 |
+
"force_envs_single_thread": false,
|
| 60 |
+
"default_niceness": 0,
|
| 61 |
+
"log_to_file": true,
|
| 62 |
+
"experiment_summaries_interval": 10,
|
| 63 |
+
"flush_summaries_interval": 30,
|
| 64 |
+
"stats_avg": 100,
|
| 65 |
+
"summaries_use_frameskip": true,
|
| 66 |
+
"heartbeat_interval": 20,
|
| 67 |
+
"heartbeat_reporting_interval": 600,
|
| 68 |
+
"train_for_env_steps": 4000000,
|
| 69 |
+
"train_for_seconds": 10000000000,
|
| 70 |
+
"save_every_sec": 120,
|
| 71 |
+
"keep_checkpoints": 2,
|
| 72 |
+
"load_checkpoint_kind": "latest",
|
| 73 |
+
"save_milestones_sec": -1,
|
| 74 |
+
"save_best_every_sec": 5,
|
| 75 |
+
"save_best_metric": "reward",
|
| 76 |
+
"save_best_after": 100000,
|
| 77 |
+
"benchmark": false,
|
| 78 |
+
"encoder_mlp_layers": [
|
| 79 |
+
512,
|
| 80 |
+
512
|
| 81 |
+
],
|
| 82 |
+
"encoder_conv_architecture": "convnet_simple",
|
| 83 |
+
"encoder_conv_mlp_layers": [
|
| 84 |
+
512
|
| 85 |
+
],
|
| 86 |
+
"use_rnn": true,
|
| 87 |
+
"rnn_size": 512,
|
| 88 |
+
"rnn_type": "gru",
|
| 89 |
+
"rnn_num_layers": 1,
|
| 90 |
+
"decoder_mlp_layers": [],
|
| 91 |
+
"nonlinearity": "elu",
|
| 92 |
+
"policy_initialization": "orthogonal",
|
| 93 |
+
"policy_init_gain": 1.0,
|
| 94 |
+
"actor_critic_share_weights": true,
|
| 95 |
+
"adaptive_stddev": true,
|
| 96 |
+
"continuous_tanh_scale": 0.0,
|
| 97 |
+
"initial_stddev": 1.0,
|
| 98 |
+
"use_env_info_cache": false,
|
| 99 |
+
"env_gpu_actions": false,
|
| 100 |
+
"env_gpu_observations": true,
|
| 101 |
+
"env_frameskip": 4,
|
| 102 |
+
"env_framestack": 1,
|
| 103 |
+
"pixel_format": "CHW",
|
| 104 |
+
"use_record_episode_statistics": false,
|
| 105 |
+
"with_wandb": false,
|
| 106 |
+
"wandb_user": null,
|
| 107 |
+
"wandb_project": "sample_factory",
|
| 108 |
+
"wandb_group": null,
|
| 109 |
+
"wandb_job_type": "SF",
|
| 110 |
+
"wandb_tags": [],
|
| 111 |
+
"with_pbt": false,
|
| 112 |
+
"pbt_mix_policies_in_one_env": true,
|
| 113 |
+
"pbt_period_env_steps": 5000000,
|
| 114 |
+
"pbt_start_mutation": 20000000,
|
| 115 |
+
"pbt_replace_fraction": 0.3,
|
| 116 |
+
"pbt_mutation_rate": 0.15,
|
| 117 |
+
"pbt_replace_reward_gap": 0.1,
|
| 118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
| 119 |
+
"pbt_optimize_gamma": false,
|
| 120 |
+
"pbt_target_objective": "true_objective",
|
| 121 |
+
"pbt_perturb_min": 1.1,
|
| 122 |
+
"pbt_perturb_max": 1.5,
|
| 123 |
+
"num_agents": -1,
|
| 124 |
+
"num_humans": 0,
|
| 125 |
+
"num_bots": -1,
|
| 126 |
+
"start_bot_difficulty": null,
|
| 127 |
+
"timelimit": null,
|
| 128 |
+
"res_w": 128,
|
| 129 |
+
"res_h": 72,
|
| 130 |
+
"wide_aspect_ratio": false,
|
| 131 |
+
"eval_env_frameskip": 1,
|
| 132 |
+
"fps": 35,
|
| 133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
| 134 |
+
"cli_args": {
|
| 135 |
+
"env": "doom_health_gathering_supreme",
|
| 136 |
+
"num_workers": 8,
|
| 137 |
+
"num_envs_per_worker": 4,
|
| 138 |
+
"train_for_env_steps": 4000000
|
| 139 |
+
},
|
| 140 |
+
"git_hash": "unknown",
|
| 141 |
+
"git_repo_name": "not a git repository"
|
| 142 |
+
}
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ea753e9c46c9d9e62df29a036f346bd5c1e48f7b5007441116f98761b06ad2a
|
| 3 |
+
size 23153136
|
sf_log.txt
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[2025-01-31 20:13:33,790][46432] Worker 3 uses CPU cores [6, 7]
|
| 2 |
+
[2025-01-31 20:13:33,868][46435] Worker 6 uses CPU cores [12, 13]
|
| 3 |
+
[2025-01-31 20:13:33,891][46433] Worker 2 uses CPU cores [4, 5]
|
| 4 |
+
[2025-01-31 20:13:33,909][46434] Worker 4 uses CPU cores [8, 9]
|
| 5 |
+
[2025-01-31 20:13:34,088][46429] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
| 6 |
+
[2025-01-31 20:13:34,088][46429] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
| 7 |
+
[2025-01-31 20:13:34,113][46429] Num visible devices: 1
|
| 8 |
+
[2025-01-31 20:13:34,119][46430] Worker 0 uses CPU cores [0, 1]
|
| 9 |
+
[2025-01-31 20:13:34,141][46431] Worker 1 uses CPU cores [2, 3]
|
| 10 |
+
[2025-01-31 20:13:34,147][46416] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
| 11 |
+
[2025-01-31 20:13:34,148][46416] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
| 12 |
+
[2025-01-31 20:13:34,172][46416] Num visible devices: 1
|
| 13 |
+
[2025-01-31 20:13:34,176][46416] Starting seed is not provided
|
| 14 |
+
[2025-01-31 20:13:34,176][46416] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
| 15 |
+
[2025-01-31 20:13:34,176][46416] Initializing actor-critic model on device cuda:0
|
| 16 |
+
[2025-01-31 20:13:34,177][46416] RunningMeanStd input shape: (3, 72, 128)
|
| 17 |
+
[2025-01-31 20:13:34,177][46416] RunningMeanStd input shape: (1,)
|
| 18 |
+
[2025-01-31 20:13:34,191][46416] ConvEncoder: input_channels=3
|
| 19 |
+
[2025-01-31 20:13:34,219][46437] Worker 5 uses CPU cores [10, 11]
|
| 20 |
+
[2025-01-31 20:13:34,288][46436] Worker 7 uses CPU cores [14, 15]
|
| 21 |
+
[2025-01-31 20:13:34,315][46416] Conv encoder output size: 512
|
| 22 |
+
[2025-01-31 20:13:34,315][46416] Policy head output size: 512
|
| 23 |
+
[2025-01-31 20:13:34,330][46416] Created Actor Critic model with architecture:
|
| 24 |
+
[2025-01-31 20:13:34,330][46416] ActorCriticSharedWeights(
|
| 25 |
+
(obs_normalizer): ObservationNormalizer(
|
| 26 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
| 27 |
+
(running_mean_std): ModuleDict(
|
| 28 |
+
(obs): RunningMeanStdInPlace()
|
| 29 |
+
)
|
| 30 |
+
)
|
| 31 |
+
)
|
| 32 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
| 33 |
+
(encoder): VizdoomEncoder(
|
| 34 |
+
(basic_encoder): ConvEncoder(
|
| 35 |
+
(enc): RecursiveScriptModule(
|
| 36 |
+
original_name=ConvEncoderImpl
|
| 37 |
+
(conv_head): RecursiveScriptModule(
|
| 38 |
+
original_name=Sequential
|
| 39 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
| 40 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
| 41 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
| 42 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
| 43 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
| 44 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
| 45 |
+
)
|
| 46 |
+
(mlp_layers): RecursiveScriptModule(
|
| 47 |
+
original_name=Sequential
|
| 48 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
| 49 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
| 50 |
+
)
|
| 51 |
+
)
|
| 52 |
+
)
|
| 53 |
+
)
|
| 54 |
+
(core): ModelCoreRNN(
|
| 55 |
+
(core): GRU(512, 512)
|
| 56 |
+
)
|
| 57 |
+
(decoder): MlpDecoder(
|
| 58 |
+
(mlp): Identity()
|
| 59 |
+
)
|
| 60 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
| 61 |
+
(action_parameterization): ActionParameterizationDefault(
|
| 62 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
| 63 |
+
)
|
| 64 |
+
)
|
| 65 |
+
[2025-01-31 20:13:34,494][46416] Using optimizer <class 'torch.optim.adam.Adam'>
|
| 66 |
+
[2025-01-31 20:13:35,209][46416] No checkpoints found
|
| 67 |
+
[2025-01-31 20:13:35,209][46416] Did not load from checkpoint, starting from scratch!
|
| 68 |
+
[2025-01-31 20:13:35,209][46416] Initialized policy 0 weights for model version 0
|
| 69 |
+
[2025-01-31 20:13:35,213][46416] LearnerWorker_p0 finished initialization!
|
| 70 |
+
[2025-01-31 20:13:35,213][46416] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
| 71 |
+
[2025-01-31 20:13:35,337][46429] RunningMeanStd input shape: (3, 72, 128)
|
| 72 |
+
[2025-01-31 20:13:35,338][46429] RunningMeanStd input shape: (1,)
|
| 73 |
+
[2025-01-31 20:13:35,350][46429] ConvEncoder: input_channels=3
|
| 74 |
+
[2025-01-31 20:13:35,461][46429] Conv encoder output size: 512
|
| 75 |
+
[2025-01-31 20:13:35,461][46429] Policy head output size: 512
|
| 76 |
+
[2025-01-31 20:13:35,547][46437] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 77 |
+
[2025-01-31 20:13:35,550][46430] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 78 |
+
[2025-01-31 20:13:35,556][46433] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 79 |
+
[2025-01-31 20:13:35,557][46435] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 80 |
+
[2025-01-31 20:13:35,561][46434] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 81 |
+
[2025-01-31 20:13:35,568][46431] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 82 |
+
[2025-01-31 20:13:35,579][46436] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 83 |
+
[2025-01-31 20:13:35,579][46432] Doom resolution: 160x120, resize resolution: (128, 72)
|
| 84 |
+
[2025-01-31 20:13:35,925][46433] Decorrelating experience for 0 frames...
|
| 85 |
+
[2025-01-31 20:13:35,945][46436] Decorrelating experience for 0 frames...
|
| 86 |
+
[2025-01-31 20:13:35,953][46430] Decorrelating experience for 0 frames...
|
| 87 |
+
[2025-01-31 20:13:35,953][46437] Decorrelating experience for 0 frames...
|
| 88 |
+
[2025-01-31 20:13:35,963][46434] Decorrelating experience for 0 frames...
|
| 89 |
+
[2025-01-31 20:13:35,971][46431] Decorrelating experience for 0 frames...
|
| 90 |
+
[2025-01-31 20:13:36,308][46433] Decorrelating experience for 32 frames...
|
| 91 |
+
[2025-01-31 20:13:36,323][46437] Decorrelating experience for 32 frames...
|
| 92 |
+
[2025-01-31 20:13:36,326][46434] Decorrelating experience for 32 frames...
|
| 93 |
+
[2025-01-31 20:13:36,332][46435] Decorrelating experience for 0 frames...
|
| 94 |
+
[2025-01-31 20:13:36,338][46431] Decorrelating experience for 32 frames...
|
| 95 |
+
[2025-01-31 20:13:36,356][46432] Decorrelating experience for 0 frames...
|
| 96 |
+
[2025-01-31 20:13:36,373][46436] Decorrelating experience for 32 frames...
|
| 97 |
+
[2025-01-31 20:13:36,392][46430] Decorrelating experience for 32 frames...
|
| 98 |
+
[2025-01-31 20:13:36,721][46432] Decorrelating experience for 32 frames...
|
| 99 |
+
[2025-01-31 20:13:36,746][46431] Decorrelating experience for 64 frames...
|
| 100 |
+
[2025-01-31 20:13:36,747][46433] Decorrelating experience for 64 frames...
|
| 101 |
+
[2025-01-31 20:13:36,755][46435] Decorrelating experience for 32 frames...
|
| 102 |
+
[2025-01-31 20:13:36,823][46436] Decorrelating experience for 64 frames...
|
| 103 |
+
[2025-01-31 20:13:37,106][46430] Decorrelating experience for 64 frames...
|
| 104 |
+
[2025-01-31 20:13:37,128][46433] Decorrelating experience for 96 frames...
|
| 105 |
+
[2025-01-31 20:13:37,164][46434] Decorrelating experience for 64 frames...
|
| 106 |
+
[2025-01-31 20:13:37,196][46436] Decorrelating experience for 96 frames...
|
| 107 |
+
[2025-01-31 20:13:37,200][46435] Decorrelating experience for 64 frames...
|
| 108 |
+
[2025-01-31 20:13:37,440][46437] Decorrelating experience for 64 frames...
|
| 109 |
+
[2025-01-31 20:13:37,533][46430] Decorrelating experience for 96 frames...
|
| 110 |
+
[2025-01-31 20:13:37,547][46431] Decorrelating experience for 96 frames...
|
| 111 |
+
[2025-01-31 20:13:37,586][46434] Decorrelating experience for 96 frames...
|
| 112 |
+
[2025-01-31 20:13:37,591][46435] Decorrelating experience for 96 frames...
|
| 113 |
+
[2025-01-31 20:13:37,864][46432] Decorrelating experience for 64 frames...
|
| 114 |
+
[2025-01-31 20:13:37,877][46437] Decorrelating experience for 96 frames...
|
| 115 |
+
[2025-01-31 20:13:38,289][46432] Decorrelating experience for 96 frames...
|
| 116 |
+
[2025-01-31 20:13:38,658][46416] Signal inference workers to stop experience collection...
|
| 117 |
+
[2025-01-31 20:13:38,665][46429] InferenceWorker_p0-w0: stopping experience collection
|
| 118 |
+
[2025-01-31 20:13:41,309][46416] Signal inference workers to resume experience collection...
|
| 119 |
+
[2025-01-31 20:13:41,310][46429] InferenceWorker_p0-w0: resuming experience collection
|
| 120 |
+
[2025-01-31 20:13:44,232][46429] Updated weights for policy 0, policy_version 10 (0.0219)
|
| 121 |
+
[2025-01-31 20:13:47,366][46429] Updated weights for policy 0, policy_version 20 (0.0014)
|
| 122 |
+
[2025-01-31 20:13:50,648][46429] Updated weights for policy 0, policy_version 30 (0.0013)
|
| 123 |
+
[2025-01-31 20:13:53,577][46416] Saving new best policy, reward=4.509!
|
| 124 |
+
[2025-01-31 20:13:53,890][46429] Updated weights for policy 0, policy_version 40 (0.0014)
|
| 125 |
+
[2025-01-31 20:13:57,165][46429] Updated weights for policy 0, policy_version 50 (0.0014)
|
| 126 |
+
[2025-01-31 20:14:00,354][46429] Updated weights for policy 0, policy_version 60 (0.0012)
|
| 127 |
+
[2025-01-31 20:14:03,499][46429] Updated weights for policy 0, policy_version 70 (0.0013)
|
| 128 |
+
[2025-01-31 20:14:06,678][46429] Updated weights for policy 0, policy_version 80 (0.0013)
|
| 129 |
+
[2025-01-31 20:14:09,805][46429] Updated weights for policy 0, policy_version 90 (0.0014)
|
| 130 |
+
[2025-01-31 20:14:12,954][46429] Updated weights for policy 0, policy_version 100 (0.0013)
|
| 131 |
+
[2025-01-31 20:14:13,634][46416] Saving new best policy, reward=4.791!
|
| 132 |
+
[2025-01-31 20:14:16,207][46429] Updated weights for policy 0, policy_version 110 (0.0015)
|
| 133 |
+
[2025-01-31 20:14:19,474][46429] Updated weights for policy 0, policy_version 120 (0.0013)
|
| 134 |
+
[2025-01-31 20:14:22,495][46429] Updated weights for policy 0, policy_version 130 (0.0013)
|
| 135 |
+
[2025-01-31 20:14:25,795][46429] Updated weights for policy 0, policy_version 140 (0.0013)
|
| 136 |
+
[2025-01-31 20:14:28,975][46429] Updated weights for policy 0, policy_version 150 (0.0014)
|
| 137 |
+
[2025-01-31 20:14:32,173][46429] Updated weights for policy 0, policy_version 160 (0.0013)
|
| 138 |
+
[2025-01-31 20:14:33,578][46416] Saving new best policy, reward=4.804!
|
| 139 |
+
[2025-01-31 20:14:35,393][46429] Updated weights for policy 0, policy_version 170 (0.0013)
|
| 140 |
+
[2025-01-31 20:14:38,482][46429] Updated weights for policy 0, policy_version 180 (0.0013)
|
| 141 |
+
[2025-01-31 20:14:38,583][46416] Saving new best policy, reward=5.109!
|
| 142 |
+
[2025-01-31 20:14:41,545][46429] Updated weights for policy 0, policy_version 190 (0.0012)
|
| 143 |
+
[2025-01-31 20:14:43,578][46416] Saving new best policy, reward=5.574!
|
| 144 |
+
[2025-01-31 20:14:44,782][46429] Updated weights for policy 0, policy_version 200 (0.0014)
|
| 145 |
+
[2025-01-31 20:14:47,936][46429] Updated weights for policy 0, policy_version 210 (0.0013)
|
| 146 |
+
[2025-01-31 20:14:48,613][46416] Saving new best policy, reward=6.122!
|
| 147 |
+
[2025-01-31 20:14:51,163][46429] Updated weights for policy 0, policy_version 220 (0.0013)
|
| 148 |
+
[2025-01-31 20:14:54,369][46429] Updated weights for policy 0, policy_version 230 (0.0012)
|
| 149 |
+
[2025-01-31 20:14:57,579][46429] Updated weights for policy 0, policy_version 240 (0.0015)
|
| 150 |
+
[2025-01-31 20:15:00,685][46429] Updated weights for policy 0, policy_version 250 (0.0012)
|
| 151 |
+
[2025-01-31 20:15:03,578][46416] Saving new best policy, reward=6.260!
|
| 152 |
+
[2025-01-31 20:15:03,812][46429] Updated weights for policy 0, policy_version 260 (0.0012)
|
| 153 |
+
[2025-01-31 20:15:06,989][46429] Updated weights for policy 0, policy_version 270 (0.0013)
|
| 154 |
+
[2025-01-31 20:15:08,586][46416] Saving new best policy, reward=6.538!
|
| 155 |
+
[2025-01-31 20:15:10,133][46429] Updated weights for policy 0, policy_version 280 (0.0013)
|
| 156 |
+
[2025-01-31 20:15:13,201][46429] Updated weights for policy 0, policy_version 290 (0.0013)
|
| 157 |
+
[2025-01-31 20:15:13,578][46416] Saving new best policy, reward=7.909!
|
| 158 |
+
[2025-01-31 20:15:16,388][46429] Updated weights for policy 0, policy_version 300 (0.0014)
|
| 159 |
+
[2025-01-31 20:15:18,606][46416] Saving new best policy, reward=8.551!
|
| 160 |
+
[2025-01-31 20:15:19,573][46429] Updated weights for policy 0, policy_version 310 (0.0013)
|
| 161 |
+
[2025-01-31 20:15:22,678][46429] Updated weights for policy 0, policy_version 320 (0.0012)
|
| 162 |
+
[2025-01-31 20:15:23,578][46416] Saving new best policy, reward=10.038!
|
| 163 |
+
[2025-01-31 20:15:25,952][46429] Updated weights for policy 0, policy_version 330 (0.0014)
|
| 164 |
+
[2025-01-31 20:15:28,587][46416] Saving /home/neptun/PycharmProjects/RL_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000338_1384448.pth...
|
| 165 |
+
[2025-01-31 20:15:29,205][46429] Updated weights for policy 0, policy_version 340 (0.0014)
|
| 166 |
+
[2025-01-31 20:15:32,504][46429] Updated weights for policy 0, policy_version 350 (0.0014)
|
| 167 |
+
[2025-01-31 20:15:33,578][46416] Saving new best policy, reward=10.544!
|
| 168 |
+
[2025-01-31 20:15:35,771][46429] Updated weights for policy 0, policy_version 360 (0.0013)
|
| 169 |
+
[2025-01-31 20:15:38,583][46416] Saving new best policy, reward=10.780!
|
| 170 |
+
[2025-01-31 20:15:39,001][46429] Updated weights for policy 0, policy_version 370 (0.0014)
|
| 171 |
+
[2025-01-31 20:15:42,201][46429] Updated weights for policy 0, policy_version 380 (0.0014)
|
| 172 |
+
[2025-01-31 20:15:43,578][46416] Saving new best policy, reward=11.704!
|
| 173 |
+
[2025-01-31 20:15:45,508][46429] Updated weights for policy 0, policy_version 390 (0.0013)
|
| 174 |
+
[2025-01-31 20:15:48,582][46416] Saving new best policy, reward=13.792!
|
| 175 |
+
[2025-01-31 20:15:48,734][46429] Updated weights for policy 0, policy_version 400 (0.0014)
|
| 176 |
+
[2025-01-31 20:15:51,771][46429] Updated weights for policy 0, policy_version 410 (0.0013)
|
| 177 |
+
[2025-01-31 20:15:53,578][46416] Saving new best policy, reward=14.734!
|
| 178 |
+
[2025-01-31 20:15:55,029][46429] Updated weights for policy 0, policy_version 420 (0.0013)
|
| 179 |
+
[2025-01-31 20:15:58,172][46429] Updated weights for policy 0, policy_version 430 (0.0014)
|
| 180 |
+
[2025-01-31 20:15:58,582][46416] Saving new best policy, reward=15.724!
|
| 181 |
+
[2025-01-31 20:16:01,354][46429] Updated weights for policy 0, policy_version 440 (0.0013)
|
| 182 |
+
[2025-01-31 20:16:04,536][46429] Updated weights for policy 0, policy_version 450 (0.0012)
|
| 183 |
+
[2025-01-31 20:16:07,723][46429] Updated weights for policy 0, policy_version 460 (0.0014)
|
| 184 |
+
[2025-01-31 20:16:08,640][46416] Saving new best policy, reward=15.740!
|
| 185 |
+
[2025-01-31 20:16:10,822][46429] Updated weights for policy 0, policy_version 470 (0.0013)
|
| 186 |
+
[2025-01-31 20:16:13,579][46416] Saving new best policy, reward=17.087!
|
| 187 |
+
[2025-01-31 20:16:14,126][46429] Updated weights for policy 0, policy_version 480 (0.0013)
|
| 188 |
+
[2025-01-31 20:16:17,260][46429] Updated weights for policy 0, policy_version 490 (0.0012)
|
| 189 |
+
[2025-01-31 20:16:18,585][46416] Saving new best policy, reward=18.021!
|
| 190 |
+
[2025-01-31 20:16:20,422][46429] Updated weights for policy 0, policy_version 500 (0.0014)
|
| 191 |
+
[2025-01-31 20:16:23,465][46429] Updated weights for policy 0, policy_version 510 (0.0013)
|
| 192 |
+
[2025-01-31 20:16:23,579][46416] Saving new best policy, reward=19.312!
|
| 193 |
+
[2025-01-31 20:16:26,748][46429] Updated weights for policy 0, policy_version 520 (0.0013)
|
| 194 |
+
[2025-01-31 20:16:29,934][46429] Updated weights for policy 0, policy_version 530 (0.0014)
|
| 195 |
+
[2025-01-31 20:16:33,082][46429] Updated weights for policy 0, policy_version 540 (0.0013)
|
| 196 |
+
[2025-01-31 20:16:33,578][46416] Saving new best policy, reward=19.714!
|
| 197 |
+
[2025-01-31 20:16:36,231][46429] Updated weights for policy 0, policy_version 550 (0.0013)
|
| 198 |
+
[2025-01-31 20:16:39,448][46429] Updated weights for policy 0, policy_version 560 (0.0015)
|
| 199 |
+
[2025-01-31 20:16:42,603][46429] Updated weights for policy 0, policy_version 570 (0.0012)
|
| 200 |
+
[2025-01-31 20:16:43,578][46416] Saving new best policy, reward=20.811!
|
| 201 |
+
[2025-01-31 20:16:45,765][46429] Updated weights for policy 0, policy_version 580 (0.0014)
|
| 202 |
+
[2025-01-31 20:16:48,582][46416] Saving new best policy, reward=22.924!
|
| 203 |
+
[2025-01-31 20:16:48,888][46429] Updated weights for policy 0, policy_version 590 (0.0013)
|
| 204 |
+
[2025-01-31 20:16:52,060][46429] Updated weights for policy 0, policy_version 600 (0.0013)
|
| 205 |
+
[2025-01-31 20:16:55,236][46429] Updated weights for policy 0, policy_version 610 (0.0013)
|
| 206 |
+
[2025-01-31 20:16:58,599][46416] Saving new best policy, reward=24.094!
|
| 207 |
+
[2025-01-31 20:16:58,602][46429] Updated weights for policy 0, policy_version 620 (0.0014)
|
| 208 |
+
[2025-01-31 20:17:01,769][46429] Updated weights for policy 0, policy_version 630 (0.0013)
|
| 209 |
+
[2025-01-31 20:17:03,578][46416] Saving new best policy, reward=25.401!
|
| 210 |
+
[2025-01-31 20:17:04,949][46429] Updated weights for policy 0, policy_version 640 (0.0014)
|
| 211 |
+
[2025-01-31 20:17:08,060][46429] Updated weights for policy 0, policy_version 650 (0.0014)
|
| 212 |
+
[2025-01-31 20:17:11,268][46429] Updated weights for policy 0, policy_version 660 (0.0013)
|
| 213 |
+
[2025-01-31 20:17:14,343][46429] Updated weights for policy 0, policy_version 670 (0.0014)
|
| 214 |
+
[2025-01-31 20:17:17,552][46429] Updated weights for policy 0, policy_version 680 (0.0013)
|
| 215 |
+
[2025-01-31 20:17:18,591][46416] Saving new best policy, reward=26.343!
|
| 216 |
+
[2025-01-31 20:17:20,770][46429] Updated weights for policy 0, policy_version 690 (0.0013)
|
| 217 |
+
[2025-01-31 20:17:23,579][46416] Saving new best policy, reward=26.357!
|
| 218 |
+
[2025-01-31 20:17:23,870][46429] Updated weights for policy 0, policy_version 700 (0.0013)
|
| 219 |
+
[2025-01-31 20:17:27,039][46429] Updated weights for policy 0, policy_version 710 (0.0012)
|
| 220 |
+
[2025-01-31 20:17:28,583][46416] Saving /home/neptun/PycharmProjects/RL_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000714_2924544.pth...
|
| 221 |
+
[2025-01-31 20:17:30,340][46429] Updated weights for policy 0, policy_version 720 (0.0013)
|
| 222 |
+
[2025-01-31 20:17:33,487][46429] Updated weights for policy 0, policy_version 730 (0.0013)
|
| 223 |
+
[2025-01-31 20:17:36,627][46429] Updated weights for policy 0, policy_version 740 (0.0014)
|
| 224 |
+
[2025-01-31 20:17:39,812][46429] Updated weights for policy 0, policy_version 750 (0.0013)
|
| 225 |
+
[2025-01-31 20:17:42,885][46429] Updated weights for policy 0, policy_version 760 (0.0013)
|
| 226 |
+
[2025-01-31 20:17:46,008][46429] Updated weights for policy 0, policy_version 770 (0.0014)
|
| 227 |
+
[2025-01-31 20:17:49,232][46429] Updated weights for policy 0, policy_version 780 (0.0013)
|
| 228 |
+
[2025-01-31 20:17:52,321][46429] Updated weights for policy 0, policy_version 790 (0.0013)
|
| 229 |
+
[2025-01-31 20:17:55,575][46429] Updated weights for policy 0, policy_version 800 (0.0014)
|
| 230 |
+
[2025-01-31 20:17:58,730][46429] Updated weights for policy 0, policy_version 810 (0.0014)
|
| 231 |
+
[2025-01-31 20:18:01,923][46429] Updated weights for policy 0, policy_version 820 (0.0013)
|
| 232 |
+
[2025-01-31 20:18:05,043][46429] Updated weights for policy 0, policy_version 830 (0.0014)
|
| 233 |
+
[2025-01-31 20:18:08,157][46429] Updated weights for policy 0, policy_version 840 (0.0013)
|
| 234 |
+
[2025-01-31 20:18:11,258][46429] Updated weights for policy 0, policy_version 850 (0.0013)
|
| 235 |
+
[2025-01-31 20:18:14,438][46429] Updated weights for policy 0, policy_version 860 (0.0014)
|
| 236 |
+
[2025-01-31 20:18:17,488][46429] Updated weights for policy 0, policy_version 870 (0.0013)
|
| 237 |
+
[2025-01-31 20:18:20,750][46429] Updated weights for policy 0, policy_version 880 (0.0013)
|
| 238 |
+
[2025-01-31 20:18:23,921][46429] Updated weights for policy 0, policy_version 890 (0.0013)
|
| 239 |
+
[2025-01-31 20:18:27,184][46429] Updated weights for policy 0, policy_version 900 (0.0014)
|
| 240 |
+
[2025-01-31 20:18:30,373][46429] Updated weights for policy 0, policy_version 910 (0.0015)
|
| 241 |
+
[2025-01-31 20:18:33,523][46429] Updated weights for policy 0, policy_version 920 (0.0012)
|
| 242 |
+
[2025-01-31 20:18:36,624][46429] Updated weights for policy 0, policy_version 930 (0.0013)
|
| 243 |
+
[2025-01-31 20:18:39,829][46429] Updated weights for policy 0, policy_version 940 (0.0013)
|
| 244 |
+
[2025-01-31 20:18:43,000][46429] Updated weights for policy 0, policy_version 950 (0.0014)
|
| 245 |
+
[2025-01-31 20:18:46,093][46429] Updated weights for policy 0, policy_version 960 (0.0013)
|
| 246 |
+
[2025-01-31 20:18:48,585][46416] Saving new best policy, reward=26.837!
|
| 247 |
+
[2025-01-31 20:18:49,276][46429] Updated weights for policy 0, policy_version 970 (0.0013)
|
| 248 |
+
[2025-01-31 20:18:51,780][46416] Saving /home/neptun/PycharmProjects/RL_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
| 249 |
+
[2025-01-31 20:18:51,780][46416] Stopping Batcher_0...
|
| 250 |
+
[2025-01-31 20:18:51,788][46416] Loop batcher_evt_loop terminating...
|
| 251 |
+
[2025-01-31 20:18:51,808][46429] Weights refcount: 2 0
|
| 252 |
+
[2025-01-31 20:18:51,810][46429] Stopping InferenceWorker_p0-w0...
|
| 253 |
+
[2025-01-31 20:18:51,811][46429] Loop inference_proc0-0_evt_loop terminating...
|
| 254 |
+
[2025-01-31 20:18:51,839][46434] Stopping RolloutWorker_w4...
|
| 255 |
+
[2025-01-31 20:18:51,839][46434] Loop rollout_proc4_evt_loop terminating...
|
| 256 |
+
[2025-01-31 20:18:51,841][46433] Stopping RolloutWorker_w2...
|
| 257 |
+
[2025-01-31 20:18:51,842][46433] Loop rollout_proc2_evt_loop terminating...
|
| 258 |
+
[2025-01-31 20:18:51,847][46437] Stopping RolloutWorker_w5...
|
| 259 |
+
[2025-01-31 20:18:51,848][46437] Loop rollout_proc5_evt_loop terminating...
|
| 260 |
+
[2025-01-31 20:18:51,848][46435] Stopping RolloutWorker_w6...
|
| 261 |
+
[2025-01-31 20:18:51,849][46435] Loop rollout_proc6_evt_loop terminating...
|
| 262 |
+
[2025-01-31 20:18:51,850][46430] Stopping RolloutWorker_w0...
|
| 263 |
+
[2025-01-31 20:18:51,851][46430] Loop rollout_proc0_evt_loop terminating...
|
| 264 |
+
[2025-01-31 20:18:51,855][46431] Stopping RolloutWorker_w1...
|
| 265 |
+
[2025-01-31 20:18:51,856][46436] Stopping RolloutWorker_w7...
|
| 266 |
+
[2025-01-31 20:18:51,856][46431] Loop rollout_proc1_evt_loop terminating...
|
| 267 |
+
[2025-01-31 20:18:51,857][46436] Loop rollout_proc7_evt_loop terminating...
|
| 268 |
+
[2025-01-31 20:18:51,858][46432] Stopping RolloutWorker_w3...
|
| 269 |
+
[2025-01-31 20:18:51,858][46432] Loop rollout_proc3_evt_loop terminating...
|
| 270 |
+
[2025-01-31 20:18:51,891][46416] Removing /home/neptun/PycharmProjects/RL_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000338_1384448.pth
|
| 271 |
+
[2025-01-31 20:18:51,908][46416] Saving new best policy, reward=27.484!
|
| 272 |
+
[2025-01-31 20:18:52,110][46416] Saving /home/neptun/PycharmProjects/RL_course/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
| 273 |
+
[2025-01-31 20:18:52,383][46416] Stopping LearnerWorker_p0...
|
| 274 |
+
[2025-01-31 20:18:52,383][46416] Loop learner_proc0_evt_loop terminating...
|