Model save
Browse files- README.md +78 -0
- model.safetensors +1 -1
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,78 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            library_name: transformers
         | 
| 3 | 
            +
            license: mit
         | 
| 4 | 
            +
            base_model: microsoft/deberta-v3-base
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
            - generated_from_trainer
         | 
| 7 | 
            +
            metrics:
         | 
| 8 | 
            +
            - f1
         | 
| 9 | 
            +
            - accuracy
         | 
| 10 | 
            +
            model-index:
         | 
| 11 | 
            +
            - name: CS221-deberta-v3-base-finetuned
         | 
| 12 | 
            +
              results: []
         | 
| 13 | 
            +
            ---
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
| 16 | 
            +
            should probably proofread and complete it, then remove this comment. -->
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # CS221-deberta-v3-base-finetuned
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
         | 
| 21 | 
            +
            It achieves the following results on the evaluation set:
         | 
| 22 | 
            +
            - Loss: 0.4812
         | 
| 23 | 
            +
            - F1: 0.7428
         | 
| 24 | 
            +
            - Roc Auc: 0.8004
         | 
| 25 | 
            +
            - Accuracy: 0.4982
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            ## Model description
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            More information needed
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            ## Intended uses & limitations
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            More information needed
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            ## Training and evaluation data
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            More information needed
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            ## Training procedure
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            ### Training hyperparameters
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            The following hyperparameters were used during training:
         | 
| 44 | 
            +
            - learning_rate: 2e-05
         | 
| 45 | 
            +
            - train_batch_size: 32
         | 
| 46 | 
            +
            - eval_batch_size: 32
         | 
| 47 | 
            +
            - seed: 42
         | 
| 48 | 
            +
            - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
         | 
| 49 | 
            +
            - lr_scheduler_type: cosine
         | 
| 50 | 
            +
            - lr_scheduler_warmup_steps: 100
         | 
| 51 | 
            +
            - num_epochs: 20
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            ### Training results
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            | Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
         | 
| 56 | 
            +
            |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
         | 
| 57 | 
            +
            | 0.619         | 1.0   | 70   | 0.5856          | 0.1435 | 0.5     | 0.1300   |
         | 
| 58 | 
            +
            | 0.4791        | 2.0   | 140  | 0.4832          | 0.4606 | 0.6568  | 0.3032   |
         | 
| 59 | 
            +
            | 0.3998        | 3.0   | 210  | 0.4040          | 0.5811 | 0.7136  | 0.3646   |
         | 
| 60 | 
            +
            | 0.3131        | 4.0   | 280  | 0.3803          | 0.6661 | 0.7461  | 0.4242   |
         | 
| 61 | 
            +
            | 0.2597        | 5.0   | 350  | 0.3693          | 0.6935 | 0.7671  | 0.4350   |
         | 
| 62 | 
            +
            | 0.2055        | 6.0   | 420  | 0.3608          | 0.7360 | 0.7979  | 0.4693   |
         | 
| 63 | 
            +
            | 0.1445        | 7.0   | 490  | 0.3837          | 0.7354 | 0.8020  | 0.4747   |
         | 
| 64 | 
            +
            | 0.1356        | 8.0   | 560  | 0.3922          | 0.7388 | 0.8087  | 0.4801   |
         | 
| 65 | 
            +
            | 0.095         | 9.0   | 630  | 0.4000          | 0.7380 | 0.8023  | 0.4964   |
         | 
| 66 | 
            +
            | 0.0829        | 10.0  | 700  | 0.4149          | 0.7385 | 0.8010  | 0.4856   |
         | 
| 67 | 
            +
            | 0.0585        | 11.0  | 770  | 0.4290          | 0.7570 | 0.8132  | 0.4928   |
         | 
| 68 | 
            +
            | 0.0473        | 12.0  | 840  | 0.4585          | 0.7317 | 0.7944  | 0.5      |
         | 
| 69 | 
            +
            | 0.0379        | 13.0  | 910  | 0.4754          | 0.7353 | 0.7959  | 0.4856   |
         | 
| 70 | 
            +
            | 0.0277        | 14.0  | 980  | 0.4812          | 0.7428 | 0.8004  | 0.4982   |
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            ### Framework versions
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            - Transformers 4.47.0
         | 
| 76 | 
            +
            - Pytorch 2.5.1+cu121
         | 
| 77 | 
            +
            - Datasets 3.2.0
         | 
| 78 | 
            +
            - Tokenizers 0.21.0
         | 
    	
        model.safetensors
    CHANGED
    
    | @@ -1,3 +1,3 @@ | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            -
            oid sha256: | 
| 3 | 
             
            size 737728508
         | 
|  | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7aa834008dfd4c2bcfd8a1f7c72dcaf9f42464c4c05867d744931cbf92414c7d
         | 
| 3 | 
             
            size 737728508
         |