Safetensors
English
qwen3
Suu commited on
Commit
0641739
Β·
verified Β·
1 Parent(s): 3842731

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -3
README.md CHANGED
@@ -1,3 +1,131 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/Qwen3-8B-Base
7
+ datasets:
8
+ - Suu/KlearReasoner-MathSub-30K
9
+ - Suu/KlearReasoner-CodeSub-15K
10
+ metrics:
11
+ - accuracy
12
+ ---
13
+
14
+
15
+ # ✨ Klear-Reasoner-8B-SFT
16
+ We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. We investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose **G**radient-**P**reserving clipping **P**olicy **O**ptimization (**GPPO**) that gently backpropagates gradients from clipped tokens.
17
+
18
+ | Resource | Link |
19
+ |---|---|
20
+ | πŸ“ Preprints | [Paper](https://arxiv.org/pdf/2508.07629) |
21
+ | πŸ€— Daily Paper | [Paper](https://huggingface.co/papers/2508.07629) |
22
+ | πŸ€— Model Hub | [Klear-Reasoner-8B](https://huggingface.co/Suu/Klear-Reasoner-8B) |
23
+ | πŸ€— Dataset Hub | [Math RL](https://huggingface.co/datasets/Suu/KlearReasoner-MathSub-30K) |
24
+ | πŸ€— Dataset Hub | [Code RL](https://huggingface.co/datasets/Suu/KlearReasoner-CodeSub-15K) |
25
+ | πŸ› Issues & Discussions | [GitHub Issues](https://github.com/suu990901/KlearReasoner/issues) |
26
+ | πŸ“§ Contact | [email protected] |
27
+
28
+ ## πŸ“Œ Overview
29
+
30
+ <div align="center">
31
+ <img src="main_result.png" width="100%"/>
32
+
33
+ <sub>Benchmark accuracy of Klear-Reasoner-8B on AIME 2024/2025 (avg@64), LiveCodeBench V5 (2024/08/01-2025/02/01, avg@8), and v6 (2025/02/01-2025/05/01, avg@8).</sub>
34
+ </div>
35
+
36
+ Klear-Reasoner is an 8-billion-parameter reasoning model that achieves **SOTA** performance on challenging **math and coding benchmarks**:
37
+
38
+ | Benchmark | AIME 2024 | AIME 2025 | LiveCodeBench V5 | LiveCodeBench V6 |
39
+ |---|---|---|---|---|
40
+ | **Score** | **90.5 %** | **83.2 %** | **66.0 %** | **58.1 %** |
41
+
42
+ The model combines:
43
+ 1. **Quality-centric long CoT SFT** – distilled from DeepSeek-R1-0528.
44
+ 2. **Gradient-Preserving Clipping Policy Optimization (GPPO)** – a novel RL method that **keeps gradients from clipped tokens** to boost exploration & convergence.
45
+
46
+ ---
47
+
48
+ ### Evaluation
49
+ When we expand the inference budget to 64K and adopt the YaRN method with a scaling factor of 2.5. **Evaluation is coming soon, stay tuned.**
50
+
51
+ ## πŸ“Š Benchmark Results (Pass@1)
52
+
53
+ | Model | AIME2024<br>avg@64 | AIME2025<br>avg@64 | HMMT2025<br>avg@64 | LCB V5<br>avg@8 | LCB V6<br>avg@8 |
54
+ |-------|--------------------|--------------------|--------------------|-----------------|-----------------|
55
+ | AReal-boba-RL-7B | 61.9 | 48.3 | 29.4 | 34.3 | 31.0† |
56
+ | MiMo-7B-RL | 68.2 | 55.4 | 35.7 | 57.8 | 49.3 |
57
+ | Skywork-OR1-7B | 70.2 | 54.6 | 35.7 | 47.6 | 42.7 |
58
+ | AceReason-Nemotron-1.1-7B | 72.6 | 64.8 | 42.9 | 57.2 | 52.1 |
59
+ | POLARIS-4B-Preview | 81.2 | _79.4_ | 58.7 | 58.5† | 53.0† |
60
+ | Qwen3-8B | 76.0 | 67.3 | 44.7† | 57.5 | 48.4† |
61
+ | Deepseek-R1-0528-Distill-8B | _86.0_ | 76.3 | 61.5 | 61.0† | 51.6† |
62
+ | OpenReasoning-Nemotron-7B | 84.7 | 78.2 | 63.5 | _65.6_† | _56.3_† |
63
+ | Klear-Reasoner-8B-SFT | 75.6 | 70.1 | 57.6 | 58.5 | 49.6 |
64
+ | Klear-Reasoner-8B | 83.2 | 75.6 | 60.3 | 61.6 | 53.1 |
65
+ | *w/ 64K Inference Budget* | **90.5** | **83.2** | **70.8** | **66.0** | **58.1** |
66
+
67
+ > We report the average `pass@1` results (avg@_n_), with all other evaluation metrics following the DeepSeek-R1 assessment framework (temperature=0.6, top_p=0.95).
68
+
69
+
70
+ ---
71
+
72
+ ## πŸ§ͺ Training
73
+ ### Configure the experimental environment
74
+ ```bash
75
+ git clone https://github.com/suu990901/Klear_Reasoner
76
+ cd Klear_Reasoner
77
+ pip install -r requirements.txt
78
+ ```
79
+ For the code, we use [Firejail](https://github.com/netblue30/firejail) for the **sandbox** environment. Additionally, we implemented multi-process control based on [Pebble](https://github.com/noxdafox/pebble), enabling automatic resource reclamation upon task timeout. For mathematics, we use [math_verify](https://github.com/huggingface/Math-Verify) for judging.
80
+
81
+ ### Using Ray for Multi-Node Training
82
+ For multi-node training​​, ensure ​​all nodes are started and connected via Ray​​ before executing the training script. Below is a brief setup guide for Ray across multiple machines:
83
+ #### Step 1: Start Ray on the Head Node (node0)
84
+
85
+ On the first node (typically called `node0`), run:
86
+
87
+ ```bash
88
+ ray start --head --dashboard-host=0.0.0.0
89
+ ```
90
+
91
+ Get the IP address of the master node.
92
+ ```bash
93
+ MASTER_IP=$(hostname -I | awk '{print $1}')
94
+ ```
95
+ #### Step 2: Connect Other Nodes (e.g., node1)
96
+
97
+ On each additional worker node (e.g., `node1`), run the following, replacing the IP with that of your head node:
98
+
99
+ ```bash
100
+ ray start --address=\"$MASTER_IP:6379\"
101
+ ```
102
+
103
+ ### RL Training
104
+ Run the following script on the master node to start the training task.
105
+
106
+ ```bash
107
+ bash recipe/dapo/perf_run_dapo_ours_math.sh # For Math RL
108
+ bash recipe/dapo/perf_run_dapo_ours_code.sh # For Code RL
109
+ ```
110
+
111
+ In the startup script, you need to set the following variables:
112
+ ```bash
113
+ YOUR_MODEL_PATH="<your_model_path>"
114
+ CKPTS_SAVE_DIR="<ckpts_save_path>"
115
+ YOUR_TRAIN_FILE="<train_data_path>"
116
+ YOUR_TEST_FILE="<test_data_path>"
117
+ ```
118
+
119
+ ## 🀝 Citation
120
+ If you find this work helpful, please cite our paper:
121
+ ```bibtex
122
+ @misc{su2025klearreasoneradvancingreasoningcapability,
123
+ title={Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization},
124
+ author={Zhenpeng Su and Leiyu Pan and Xue Bai and Dening Liu and Guanting Dong and Jiaming Huang and Wenping Hu and Fuzheng Zhang and Kun Gai and Guorui Zhou},
125
+ year={2025},
126
+ eprint={2508.07629},
127
+ archivePrefix={arXiv},
128
+ primaryClass={cs.LG},
129
+ url={https://arxiv.org/abs/2508.07629},
130
+ }
131
+ ```