Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,131 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen3-8B-Base
|
7 |
+
datasets:
|
8 |
+
- Suu/KlearReasoner-MathSub-30K
|
9 |
+
- Suu/KlearReasoner-CodeSub-15K
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
# β¨ Klear-Reasoner-8B-SFT
|
16 |
+
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. We investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose **G**radient-**P**reserving clipping **P**olicy **O**ptimization (**GPPO**) that gently backpropagates gradients from clipped tokens.
|
17 |
+
|
18 |
+
| Resource | Link |
|
19 |
+
|---|---|
|
20 |
+
| π Preprints | [Paper](https://arxiv.org/pdf/2508.07629) |
|
21 |
+
| π€ Daily Paper | [Paper](https://huggingface.co/papers/2508.07629) |
|
22 |
+
| π€ Model Hub | [Klear-Reasoner-8B](https://huggingface.co/Suu/Klear-Reasoner-8B) |
|
23 |
+
| π€ Dataset Hub | [Math RL](https://huggingface.co/datasets/Suu/KlearReasoner-MathSub-30K) |
|
24 |
+
| π€ Dataset Hub | [Code RL](https://huggingface.co/datasets/Suu/KlearReasoner-CodeSub-15K) |
|
25 |
+
| π Issues & Discussions | [GitHub Issues](https://github.com/suu990901/KlearReasoner/issues) |
|
26 |
+
| π§ Contact | [email protected] |
|
27 |
+
|
28 |
+
## π Overview
|
29 |
+
|
30 |
+
<div align="center">
|
31 |
+
<img src="main_result.png" width="100%"/>
|
32 |
+
|
33 |
+
<sub>Benchmark accuracy of Klear-Reasoner-8B on AIME 2024/2025 (avg@64), LiveCodeBench V5 (2024/08/01-2025/02/01, avg@8), and v6 (2025/02/01-2025/05/01, avg@8).</sub>
|
34 |
+
</div>
|
35 |
+
|
36 |
+
Klear-Reasoner is an 8-billion-parameter reasoning model that achieves **SOTA** performance on challenging **math and coding benchmarks**:
|
37 |
+
|
38 |
+
| Benchmark | AIME 2024 | AIME 2025 | LiveCodeBench V5 | LiveCodeBench V6 |
|
39 |
+
|---|---|---|---|---|
|
40 |
+
| **Score** | **90.5 %** | **83.2 %** | **66.0 %** | **58.1 %** |
|
41 |
+
|
42 |
+
The model combines:
|
43 |
+
1. **Quality-centric long CoT SFT** β distilled from DeepSeek-R1-0528.
|
44 |
+
2. **Gradient-Preserving Clipping Policy Optimization (GPPO)** β a novel RL method that **keeps gradients from clipped tokens** to boost exploration & convergence.
|
45 |
+
|
46 |
+
---
|
47 |
+
|
48 |
+
### Evaluation
|
49 |
+
When we expand the inference budget to 64K and adopt the YaRN method with a scaling factor of 2.5. **Evaluation is coming soon, stay tuned.**
|
50 |
+
|
51 |
+
## π Benchmark Results (Pass@1)
|
52 |
+
|
53 |
+
| Model | AIME2024<br>avg@64 | AIME2025<br>avg@64 | HMMT2025<br>avg@64 | LCB V5<br>avg@8 | LCB V6<br>avg@8 |
|
54 |
+
|-------|--------------------|--------------------|--------------------|-----------------|-----------------|
|
55 |
+
| AReal-boba-RL-7B | 61.9 | 48.3 | 29.4 | 34.3 | 31.0β |
|
56 |
+
| MiMo-7B-RL | 68.2 | 55.4 | 35.7 | 57.8 | 49.3 |
|
57 |
+
| Skywork-OR1-7B | 70.2 | 54.6 | 35.7 | 47.6 | 42.7 |
|
58 |
+
| AceReason-Nemotron-1.1-7B | 72.6 | 64.8 | 42.9 | 57.2 | 52.1 |
|
59 |
+
| POLARIS-4B-Preview | 81.2 | _79.4_ | 58.7 | 58.5β | 53.0β |
|
60 |
+
| Qwen3-8B | 76.0 | 67.3 | 44.7β | 57.5 | 48.4β |
|
61 |
+
| Deepseek-R1-0528-Distill-8B | _86.0_ | 76.3 | 61.5 | 61.0β | 51.6β |
|
62 |
+
| OpenReasoning-Nemotron-7B | 84.7 | 78.2 | 63.5 | _65.6_β | _56.3_β |
|
63 |
+
| Klear-Reasoner-8B-SFT | 75.6 | 70.1 | 57.6 | 58.5 | 49.6 |
|
64 |
+
| Klear-Reasoner-8B | 83.2 | 75.6 | 60.3 | 61.6 | 53.1 |
|
65 |
+
| *w/ 64K Inference Budget* | **90.5** | **83.2** | **70.8** | **66.0** | **58.1** |
|
66 |
+
|
67 |
+
> We report the average `pass@1` results (avg@_n_), with all other evaluation metrics following the DeepSeek-R1 assessment framework (temperature=0.6, top_p=0.95).
|
68 |
+
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
## π§ͺ Training
|
73 |
+
### Configure the experimental environment
|
74 |
+
```bash
|
75 |
+
git clone https://github.com/suu990901/Klear_Reasoner
|
76 |
+
cd Klear_Reasoner
|
77 |
+
pip install -r requirements.txt
|
78 |
+
```
|
79 |
+
For the code, we use [Firejail](https://github.com/netblue30/firejail) for the **sandbox** environment. Additionally, we implemented multi-process control based on [Pebble](https://github.com/noxdafox/pebble), enabling automatic resource reclamation upon task timeout. For mathematics, we use [math_verify](https://github.com/huggingface/Math-Verify) for judging.
|
80 |
+
|
81 |
+
### Using Ray for Multi-Node Training
|
82 |
+
For multi-node trainingββ, ensure ββall nodes are started and connected via Rayββ before executing the training script. Below is a brief setup guide for Ray across multiple machines:
|
83 |
+
#### Step 1: Start Ray on the Head Node (node0)
|
84 |
+
|
85 |
+
On the first node (typically called `node0`), run:
|
86 |
+
|
87 |
+
```bash
|
88 |
+
ray start --head --dashboard-host=0.0.0.0
|
89 |
+
```
|
90 |
+
|
91 |
+
Get the IP address of the master node.
|
92 |
+
```bash
|
93 |
+
MASTER_IP=$(hostname -I | awk '{print $1}')
|
94 |
+
```
|
95 |
+
#### Step 2: Connect Other Nodes (e.g., node1)
|
96 |
+
|
97 |
+
On each additional worker node (e.g., `node1`), run the following, replacing the IP with that of your head node:
|
98 |
+
|
99 |
+
```bash
|
100 |
+
ray start --address=\"$MASTER_IP:6379\"
|
101 |
+
```
|
102 |
+
|
103 |
+
### RL Training
|
104 |
+
Run the following script on the master node to start the training task.
|
105 |
+
|
106 |
+
```bash
|
107 |
+
bash recipe/dapo/perf_run_dapo_ours_math.sh # For Math RL
|
108 |
+
bash recipe/dapo/perf_run_dapo_ours_code.sh # For Code RL
|
109 |
+
```
|
110 |
+
|
111 |
+
In the startup script, you need to set the following variables:
|
112 |
+
```bash
|
113 |
+
YOUR_MODEL_PATH="<your_model_path>"
|
114 |
+
CKPTS_SAVE_DIR="<ckpts_save_path>"
|
115 |
+
YOUR_TRAIN_FILE="<train_data_path>"
|
116 |
+
YOUR_TEST_FILE="<test_data_path>"
|
117 |
+
```
|
118 |
+
|
119 |
+
## π€ Citation
|
120 |
+
If you find this work helpful, please cite our paper:
|
121 |
+
```bibtex
|
122 |
+
@misc{su2025klearreasoneradvancingreasoningcapability,
|
123 |
+
title={Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization},
|
124 |
+
author={Zhenpeng Su and Leiyu Pan and Xue Bai and Dening Liu and Guanting Dong and Jiaming Huang and Wenping Hu and Fuzheng Zhang and Kun Gai and Guorui Zhou},
|
125 |
+
year={2025},
|
126 |
+
eprint={2508.07629},
|
127 |
+
archivePrefix={arXiv},
|
128 |
+
primaryClass={cs.LG},
|
129 |
+
url={https://arxiv.org/abs/2508.07629},
|
130 |
+
}
|
131 |
+
```
|