End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama2
|
4 |
+
base_model: meta-llama/Llama-2-7b-hf
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9352
|
22 |
+
- Rewards/chosen: -1.7573
|
23 |
+
- Rewards/rejected: -1.5576
|
24 |
+
- Rewards/accuracies: 0.5
|
25 |
+
- Rewards/margins: -0.1997
|
26 |
+
- Logps/rejected: -110.7931
|
27 |
+
- Logps/chosen: -134.9680
|
28 |
+
- Logits/rejected: 0.0983
|
29 |
+
- Logits/chosen: 0.0721
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.7029 | 0.3026 | 77 | 0.6933 | -0.0162 | -0.0163 | 0.3333 | 0.0001 | -95.3805 | -117.5575 | 0.5079 | 0.4933 |
|
64 |
+
| 0.6605 | 0.6051 | 154 | 0.6804 | 0.0594 | 0.0318 | 0.6667 | 0.0276 | -94.8997 | -116.8017 | 0.4988 | 0.4837 |
|
65 |
+
| 0.6291 | 0.9077 | 231 | 0.6684 | 0.2040 | 0.1302 | 0.75 | 0.0738 | -93.9156 | -115.3556 | 0.4931 | 0.4757 |
|
66 |
+
| 0.3149 | 1.2102 | 308 | 0.6806 | -0.2081 | -0.3152 | 0.5833 | 0.1071 | -98.3691 | -119.4764 | 0.4810 | 0.4619 |
|
67 |
+
| 0.3251 | 1.5128 | 385 | 0.7502 | -0.4333 | -0.4100 | 0.5833 | -0.0233 | -99.3170 | -121.7279 | 0.4258 | 0.4057 |
|
68 |
+
| 0.2002 | 1.8153 | 462 | 0.8816 | -1.2398 | -1.0499 | 0.5 | -0.1899 | -105.7162 | -129.7932 | 0.3036 | 0.2813 |
|
69 |
+
| 0.0182 | 2.1179 | 539 | 0.9166 | -1.4380 | -1.2371 | 0.5 | -0.2010 | -107.5881 | -131.7757 | 0.1946 | 0.1703 |
|
70 |
+
| 0.2002 | 2.4204 | 616 | 0.9190 | -1.5677 | -1.4004 | 0.5 | -0.1673 | -109.2209 | -133.0719 | 0.1338 | 0.1085 |
|
71 |
+
| 0.1982 | 2.7230 | 693 | 0.9352 | -1.7573 | -1.5576 | 0.5 | -0.1997 | -110.7931 | -134.9680 | 0.0983 | 0.0721 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- PEFT 0.12.0
|
77 |
+
- Transformers 4.45.2
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.2.0
|
80 |
+
- Tokenizers 0.20.3
|