LBK95 commited on
Commit
13b5ea2
·
verified ·
1 Parent(s): d33d284

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama2
4
+ base_model: meta-llama/Llama-2-7b-hf
5
+ tags:
6
+ - trl
7
+ - dpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-5_Q2_TTree1.4_TT0.9_TP0.7_TE0.2_V3
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.8622
22
+ - Rewards/chosen: -1.8032
23
+ - Rewards/rejected: -1.8934
24
+ - Rewards/accuracies: 0.4167
25
+ - Rewards/margins: 0.0902
26
+ - Logps/rejected: -178.6097
27
+ - Logps/chosen: -144.0242
28
+ - Logits/rejected: -0.2567
29
+ - Logits/chosen: -0.2341
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.7186 | 0.3012 | 75 | 0.6922 | 0.0088 | -0.0056 | 0.6667 | 0.0144 | -159.7317 | -125.9045 | 0.2763 | 0.3051 |
64
+ | 0.6878 | 0.6024 | 150 | 0.6645 | 0.0065 | -0.0784 | 0.6667 | 0.0850 | -160.4602 | -125.9270 | 0.2430 | 0.2714 |
65
+ | 0.7115 | 0.9036 | 225 | 0.6671 | 0.1245 | 0.0380 | 0.5833 | 0.0865 | -159.2964 | -124.7477 | 0.2585 | 0.2872 |
66
+ | 0.2588 | 1.2048 | 300 | 0.5773 | -0.4124 | -0.9074 | 0.6667 | 0.4951 | -168.7503 | -130.1161 | 0.1854 | 0.2129 |
67
+ | 0.5429 | 1.5060 | 375 | 0.6801 | -0.4887 | -0.7667 | 0.5 | 0.2780 | -167.3426 | -130.8791 | 0.0976 | 0.1239 |
68
+ | 0.3313 | 1.8072 | 450 | 0.7539 | -0.6406 | -0.7950 | 0.5 | 0.1545 | -167.6264 | -132.3980 | 0.0143 | 0.0407 |
69
+ | 0.2905 | 2.1084 | 525 | 0.8112 | -1.3875 | -1.4781 | 0.4167 | 0.0906 | -174.4566 | -139.8674 | -0.1544 | -0.1306 |
70
+ | 0.1737 | 2.4096 | 600 | 0.8469 | -1.9078 | -2.0075 | 0.4167 | 0.0997 | -179.7509 | -145.0706 | -0.2506 | -0.2282 |
71
+ | 0.2314 | 2.7108 | 675 | 0.8622 | -1.8032 | -1.8934 | 0.4167 | 0.0902 | -178.6097 | -144.0242 | -0.2567 | -0.2341 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.45.2
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.2.0
80
+ - Tokenizers 0.20.3