---
license: mit
language:
- en
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
pipeline_tag: visual-question-answering
---
## Introduction
This repository contains the efficient GUI grounding model, **UI-R1-E-3B**, presented in [UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning](https://huggingface.co/papers/2503.21620).
Project page: https://github.com/lll6gg/UI-R1
Old version: [UI-R1-3B](https://huggingface.co/LZXzju/Qwen2.5-VL-3B-UI-R1)
## Benchmark 1: ScreenSpotV2
| ScreenSpotV2 | inference mode | Mobile-T | Mobile-I | Desktop-T | Desktop-I | Web-T | Web-I | Avg↑ / Len↓ |
| ------------- | -------------- | -------- | -------- | --------- | --------- | -------- | -------- | ----------------- |
| OS-ATLAS-7B | w/o thinking | 95.2 | 75.8 | 90.7 | 63.6 | 90.6 | 77.3 | 84.1 / |
| UI-TARS-7B | w/o thinking | 95.2 | 79.1 | 90.7 | 68.6 | 90.6 | 78.3 | 84.7 / |
| UI-R1-3B (v1) | w/ thinking | 96.2 | **84.3** | 92.3 | 63.6 | 89.2 | 75.4 | 85.4 / 67 |
| GUI-R1-3B | w/ thinking | 97.6 | 78.2 | 94.3 | 64.3 | 91.0 | 72.4 | 85.0 / 80 |
| UI-R1-3B (v2) | w/ thinking | 97.6 | 79.6 | 92.3 | 67.9 | 88.9 | 77.8 | 85.8 / 60 |
| **UI-R1-E-3B** | w/o thinking | **98.2** | 83.9 | **94.8** | **75.0** | **93.2** | **83.7** | **89.5** / **28** |
## Benchmark 2: ScreenSpot-Pro
| ScreenSpot-Pro | inference mode | Average Length↓ | Average Accuracy↑ |
| -------------- | -------------- | --------------- | ---------------- |
| UGround-7B | w/o thinking | - | 16.5 |
| OS-ATLAS-7B | w/o thinking | - | 18.9 |
| UI-R1-3B (v1) | w/ thinking | 102 | 17.8 |
| GUI-R1-3B | w/ thinking | 114 | 26.6 |
| UI-R1-3B (v2) | w/ thinking | 129 | 29.8 |
| **UI-R1-E-3B** | w/o thinking | **28** | **33.5** |
## Leaderboard: UI-I2E-Bench
| Model | ScreenSpot | UI-I2E-Bench Avg | ScreenSpot-Pro | Avg |
| :------------: | :--------: | :--------------: | :------------: | :--: |
| UI-TARS-1.5-7B | 88.1 | 73.2 | 42.2 | 67.8 |
| Uground-V1-72B | 89.7 | 76.3 | 34.3 | 66.8 |
| UI-TARS-72B | 88.4 | 73.7 | 38.1 | 66.7 |
| **UI-R1-E-3B** | 89.2 | 69.1 | 33.5 | 63.9 |
| Uground-V1-7B | 87.1 | 70.3 | 31.1 | 62.8 |
| InfiGUI-R1 | 87.5 | 69.7 | 29.6 | 62.3 |
| UI-TARS-7B | 89.5 | 61.4 | 35.7 | 62.2 |
| Qwen2.5-VL-72B | 87.1 | 51.4 | 43.6 | 60.7 |
| UI-I2E-VLM-7B | 82.5 | 69.5 | 23.6 | 58.5 |
| UI-TARS-2B | 82.3 | 62 | 27.7 | 57.3 |
| Qwen2.5-VL-7B | 84.7 | 53.8 | 29 | 55.8 |
| OmniParser-V2 | 72 | 54.8 | 39.6 | 55.5 |
| Uground-V1-2B | 78.8 | 57.4 | 26.6 | 54.3 |
| OS-Atlas-7B | 82.5 | 58.6 | 18.9 | 53.3 |
| **UI-R1-3B** | 83.3 | 58.5 | 17.8 | 53.2 |
| UGround-7B | 74.1 | 54.2 | 16.5 | 48.3 |
| UI-I2E-VLM-4B | 70.4 | 53.4 | 12.2 | 45.3 |
| OmniParser | 73.9 | 53.1 | 8.3 | 45.1 |
| ShowUI-2B | 76.8 | 41.5 | 7.7 | 42 |
| Qwen2.5-VL-3B | 55.5 | 41.7 | 23.9 | 41.3 |
| Aguvis-7B | 84.4 | 53.2 | 22.9 | 40.4 |
| OS-Atlas-4B | 70.1 | 44.3 | 3.7 | 39.4 |
| Qwen2-VL-7B | 42.6 | 48.7 | 1.6 | 31 |
| Seeclick | 55.8 | 26.4 | 1.1 | 27.8 |
| InternVL2-4B | 4.2 | 0.9 | 0.3 | 1.8 |
## Evaluation Code for GUI Grounding
1. Generation for UI-R1-E-3B:
```python
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="cpu",
)
model = model.to(torch.device(rank))
model = model.eval()
processor = AutoProcessor.from_pretrained(ori_processor_path)
question_template = (
f"In this UI screenshot, I want to perform the command '{task_prompt}'.\n"
"Please provide the action to perform (enumerate in ['click'])"
"and the coordinate where the cursor is moved to(integer) if click is performed.\n"
"Output the final answer in tags directly."
"The output answer format should be as follows:\n"
"[{'action': 'click', 'coordinate': [x, y]}]\n"
"Please strictly follow the format."
)
query = '\n' + question_template
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image_path}
] + [{"type": "text", "text": query}],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
response = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
response = response[0]
pred_coord, _ = extract_coord(response)
```
2. Rescale the predicted coordinate according to the image resize
```python
image = Image.open(image_path)
origin_width, origin_height = image.size
resized_height,resized_width = smart_resize(origin_height,origin_width,max_pixels=12845056)
scale_x = origin_width / resized_width
scale_y = origin_height / resized_height
pred_coord[0] = int(pred_coord[0] * scale_x)
pred_coord[1] = int(pred_coord[1] * scale_y)
```
Function smart_resize is from Qwen2VL:
```python
import math
def smart_resize(
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if height < factor or width < factor:
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
elif max(height, width) / min(height, width) > 200:
raise ValueError(
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
)
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
```