LaLegumbreArtificial commited on
Commit
f75f94f
·
verified ·
1 Parent(s): 1a31a7f

End of training

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: NEO_MUL_EXP2_4
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # NEO_MUL_EXP2_4
18
+
19
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0441
22
+ - Accuracy: 0.9833
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 32
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 128
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 5
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
56
+ | 0.1651 | 0.9886 | 65 | 0.2185 | 0.9233 |
57
+ | 0.1203 | 1.9924 | 131 | 0.1108 | 0.9583 |
58
+ | 0.0871 | 2.9962 | 197 | 0.0879 | 0.9692 |
59
+ | 0.0738 | 4.0 | 263 | 0.0665 | 0.9742 |
60
+ | 0.0614 | 4.9430 | 325 | 0.0441 | 0.9833 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.45.1
66
+ - Pytorch 2.4.0
67
+ - Datasets 3.0.1
68
+ - Tokenizers 0.20.0