File size: 4,908 Bytes
0f653ec 403b4e5 0f653ec 403b4e5 db61d16 181910c 403b4e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
license: cc
base_model: Lambent/cosmoem-4x1b
tags:
- generated_from_trainer
model-index:
- name: lisa-out
results: []
---
Intuitively it seemed like LISA training should suit a MoE pretty well; though I don't know how well calibrated my intuitions are.
Interesting thing about this one is it looks like it wasn't converging at the end of one epoch. Still more to learn.
Nous capabilities:
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-----------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosMoEAlpacaLisa-4x1b](https://huggingface.co/Lambent/CosMoEAlpacaLisa-4x1b)| 23.44| 48.13| 41.13| 29.95| 35.66|
Comparisons:
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosMoE-AlpacaLight-v0.6](https://huggingface.co/Lambent/CosMoE-AlpacaLight-v0.6)| 23.3| 52.15| 38.57| 29.01| 35.76|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosmoAlpacaLisa-0.3-1b](https://huggingface.co/Lambent/CosmoAlpacaLisa-0.3-1b)| 23.79| 51.61| 40.25| 29.97| 36.41|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosmoAlpacaLight-1b](https://huggingface.co/Lambent/CosmoAlpacaLight-1b)| 24.28| 51.31| 40.33| 29.47| 36.35|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[cosmo-1b](https://huggingface.co/HuggingFaceTB/cosmo-1b)| 22.97| 52.01| 38.02| 28.73| 35.43|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: Lambent/cosmoem-4x1b
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca
dataset_prepared_path: prepared-alpaca
val_set_size: 0.05
output_dir: ./lisa-out
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
lisa_n_layers: 4
lisa_step_interval: 10
lisa_layers_attribute: model.layers
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: CosMoE-AlpacaLisa
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 3.0
loss_watchdog_patience: 3
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.002
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# lisa-out
This model is a fine-tuned version of [Lambent/cosmoem-4x1b](https://huggingface.co/Lambent/cosmoem-4x1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2588
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.197 | 0.0 | 1 | 1.5990 |
| 1.4959 | 0.25 | 1383 | 1.4359 |
| 1.6549 | 0.5 | 2766 | 1.3353 |
| 1.3571 | 0.75 | 4149 | 1.2588 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
|