File size: 4,908 Bytes
0f653ec
 
403b4e5
 
 
 
 
 
0f653ec
403b4e5
db61d16
 
 
 
181910c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403b4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
license: cc
base_model: Lambent/cosmoem-4x1b
tags:
- generated_from_trainer
model-index:
- name: lisa-out
  results: []
---

Intuitively it seemed like LISA training should suit a MoE pretty well; though I don't know how well calibrated my intuitions are.

Interesting thing about this one is it looks like it wasn't converging at the end of one epoch. Still more to learn.

Nous capabilities:

|                                    Model                                    |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-----------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosMoEAlpacaLisa-4x1b](https://huggingface.co/Lambent/CosMoEAlpacaLisa-4x1b)|  23.44|  48.13|     41.13|   29.95|  35.66|

Comparisons:

|                                      Model                                      |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosMoE-AlpacaLight-v0.6](https://huggingface.co/Lambent/CosMoE-AlpacaLight-v0.6)|   23.3|  52.15|     38.57|   29.01|  35.76|

|                                     Model                                     |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosmoAlpacaLisa-0.3-1b](https://huggingface.co/Lambent/CosmoAlpacaLisa-0.3-1b)|  23.79|  51.61|     40.25|   29.97|  36.41|

|                                  Model                                  |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosmoAlpacaLight-1b](https://huggingface.co/Lambent/CosmoAlpacaLight-1b)|  24.28|  51.31|     40.33|   29.47|  36.35|

|                          Model                          |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[cosmo-1b](https://huggingface.co/HuggingFaceTB/cosmo-1b)|  22.97|  52.01|     38.02|   28.73|  35.43|


[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: Lambent/cosmoem-4x1b
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: vicgalle/alpaca-gpt4
    type: alpaca
dataset_prepared_path: prepared-alpaca
val_set_size: 0.05
output_dir: ./lisa-out

sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

lisa_n_layers: 4
lisa_step_interval: 10
lisa_layers_attribute: model.layers

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: CosMoE-AlpacaLisa
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 3.0
loss_watchdog_patience: 3

warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.002
fsdp:
fsdp_config:
special_tokens:

```

</details><br>

# lisa-out

This model is a fine-tuned version of [Lambent/cosmoem-4x1b](https://huggingface.co/Lambent/cosmoem-4x1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2588

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.197         | 0.0   | 1    | 1.5990          |
| 1.4959        | 0.25  | 1383 | 1.4359          |
| 1.6549        | 0.5   | 2766 | 1.3353          |
| 1.3571        | 0.75  | 4149 | 1.2588          |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0