File size: 22,632 Bytes
504587c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:478146
- loss:CoSENTLoss
widget:
- source_sentence: However, its underutilization is mainly due to the absence of a
    concrete and coherent dissemination strategy.
  sentences:
  - At the same time, they need to understand that living in Europe brings great responsibilities
    in addition to great benefits.
  - 'The mainstay of any intelligent and patriotic mineral policy can be summed up
    in the following postulate: "since minerals are exhaustible, they should only
    be exploited with the maximum return for the economy of the country where they
    are mined".'
  - We must move quickly to a shared sustainable energy supply, sustainable transportation
    and clean air.
- source_sentence: Their track record shows they do not support Australia<92>s traditional
    industries because they are constantly pandering to the Greens.
  sentences:
  - An economic dynamic based on the sustainable development of national potential,
    equitable access to the means of production, social justice, environmental conservation,
    the incorporation of added value, the promotion of competitiveness and self-management,
  - the cry "El campo no aguanta más" (The countryside can't take it anymore), of
    the peasant movement and its proclamation of "Salvemos al Campo para salvar a
    México" (Let's save the countryside to save Mexico);
  - On the other hand, increasing defence capacity is directly related to the involvement
    of all citizens in appropriate programmes, which, together with the acquisition
    of skills, experience and organisation, also contribute to forging a spirit of
    militancy and collectivity.
- source_sentence: We will prepare the proposals of the United Nations Declaration
    on the Rights of the Child in line with the commitments made.
  sentences:
  - For the presentation of Czech culture, we will also use the upcoming major anniversaries
    (100 years of the founding of Czechoslovakia, the 30th anniversary of the canonization
    of Agnes of Bohemia, 600 years since the birth of George of Poděbrady, etc.).
  - Separate prison units for young people should be established, and special rehabilitation
    measures should be introduced in these units.
  - Austrian citizenship is a valuable asset and should not become accessible to those
    who do not abide by the laws of our state.
- source_sentence: Third, CD&V wants to strengthen the social sustainability of our
    agriculture and horticulture sector.
  sentences:
  - We will take a farm-level approach where possible so that low-emissions farmers
    are rewarded with a lower cost through the ETS, rather than the current approach
    that assumes each cow, for instance, has the same emissions on every farm.
  - In addition, 20 billion euros in tax revenues are fraudulently evaded every year
    (the equivalent of the healthcare budget).
  - 87 percent of arrested undocumented migrants are released sooner or later, but
    without papers, in a lawless situation.
- source_sentence: This incites social hatred, threatens economic and social stability,
    and undermines trust in the authorities.
  sentences:
  - ' The conditions for a healthy entrepreneurship, where the most innovative and
    creative win and where the source of enrichment cannot be property speculation
    or guilds and networks.   '
  - According to statistics from the Attorney General's Office, since February 2005,
    when the implementation of the PSD was announced, the rate of violent deaths per
    100,000 inhabitants has dropped from 26.41 in December 2005 to 18.43 in December
    2007.
  - As a result, the profits of the oligarchs are more than 400 times what our entire
    country gets from the exploitation of natural resources.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LequeuISIR/final-DPR-8e-05")
# Run inference
sentences = [
    'This incites social hatred, threatens economic and social stability, and undermines trust in the authorities.',
    '\xa0The conditions for a healthy entrepreneurship, where the most innovative and creative win and where the source of enrichment cannot be property speculation or guilds and networks.   ',
    'As a result, the profits of the oligarchs are more than 400 times what our entire country gets from the exploitation of natural resources.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 478,146 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                           | sentence2                                                                           | label                                                             |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                              | int                                                               |
  | details | <ul><li>min: 17 tokens</li><li>mean: 33.73 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 33.84 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>0: ~57.50%</li><li>1: ~4.10%</li><li>2: ~38.40%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                         | sentence2                                                                                                                                                                                                                  | label          |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>There have also been other important structural changes in the countryside, which have come together to form this new, as yet unknown, country.</code>                      | <code>Meanwhile, investment, which is the way to increase production, employment capacity and competitiveness of the economy, fell from 20% of output in 1974 to only 11.8% on average between 1984 and 1988.</code>       | <code>0</code> |
  | <code>Introduce new visa categories so we can be responsive to humanitarian needs and incentivise greater investment in our domestic infrastructure and regional economies</code> | <code>The purpose of the project is to design and implement public policies aimed at achieving greater and faster inclusion of immigrants.</code>                                                                          | <code>2</code> |
  | <code>and economic crimes that seriously and generally affect the fundamental rights of individuals and the international community as a whole.</code>                            | <code>For the first time in the history, not only of Ecuador, but of the entire world, a government promoted a public audit process of the foreign debt and declared some of its tranches illegitimate and immoral.</code> | <code>0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### json

* Dataset: json
* Size: 478,146 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                           | sentence2                                                                           | label                                                             |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                              | int                                                               |
  | details | <ul><li>min: 17 tokens</li><li>mean: 33.62 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 34.48 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>0: ~57.30%</li><li>1: ~2.90%</li><li>2: ~39.80%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                           | sentence2                                                                                                                                                                             | label          |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>The anchoring of the Slovak Republic in the European Union allows citizens to feel: secure politically, secure economically, secure socially.</code>                          | <code>Radikale Venstre wants Denmark to participate fully and firmly in EU cooperation on immigration, asylum and cross-border crime.</code>                                          | <code>2</code> |
  | <code>Portugal's participation in the Community's negotiation of the next financial perspective should also be geared in the same direction.</code>                                 | <code>Given the dynamic international framework, safeguarding the national interest requires adjustments to each of these vectors.</code>                                             | <code>2</code> |
  | <code>On asylum, the Green Party will: Dismantle the direct provision system and replace it with an efficient and humane system for determining the status of asylum seekers</code> | <code>The crisis in the coal sector subsequently forced these immigrant workers to move into other economic sectors such as metallurgy, chemicals, construction and transport.</code> | <code>2</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 8e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0837 | 500   | 0.7889        | 9.5828          |
| 0.1673 | 1000  | 1.2158        | 9.3274          |
| 0.2510 | 1500  | 1.8215        | 9.4274          |
| 0.3346 | 2000  | 2.3548        | 8.2583          |
| 0.4183 | 2500  | 2.7493        | 8.1446          |
| 0.5019 | 3000  | 2.8998        | 7.9046          |
| 0.5856 | 3500  | 2.9298        | 8.0640          |
| 0.6692 | 4000  | 2.9053        | 7.2746          |
| 0.7529 | 4500  | 3.0905        | 7.5099          |
| 0.8365 | 5000  | 3.1864        | 7.3883          |
| 0.9202 | 5500  | 3.2322        | 6.9968          |
| 1.0038 | 6000  | 3.1194        | 7.4682          |
| 1.0875 | 6500  | 3.0122        | 7.7295          |
| 1.1712 | 7000  | 3.0453        | 7.1696          |
| 1.2548 | 7500  | 2.9439        | 7.2775          |
| 1.3385 | 8000  | 3.1108        | 7.4838          |
| 1.4221 | 8500  | 2.8512        | 7.5204          |
| 1.5058 | 9000  | 2.9865        | 7.4528          |
| 1.5894 | 9500  | 2.9995        | 8.0682          |
| 1.6731 | 10000 | 3.1073        | 7.5344          |
| 1.7567 | 10500 | 3.0631        | 7.4572          |
| 1.8404 | 11000 | 2.9915        | 7.4961          |
| 1.9240 | 11500 | 3.0445        | 7.3575          |
| 2.0077 | 12000 | 2.9501        | 7.9786          |
| 2.0914 | 12500 | 2.3377        | 8.6208          |
| 2.1750 | 13000 | 2.2833        | 8.8356          |
| 2.2587 | 13500 | 2.2785        | 8.8709          |
| 2.3423 | 14000 | 2.3012        | 8.6250          |
| 2.4260 | 14500 | 2.3488        | 8.1099          |
| 2.5096 | 15000 | 2.095         | 9.2305          |
| 2.5933 | 15500 | 2.4123        | 8.6405          |
| 2.6769 | 16000 | 2.2236        | 8.7805          |
| 2.7606 | 16500 | 2.3367        | 8.7110          |
| 2.8442 | 17000 | 2.1159        | 8.6447          |
| 2.9279 | 17500 | 2.1622        | 8.7123          |
| 3.0115 | 18000 | 2.1916        | 9.0314          |
| 3.0952 | 18500 | 1.604         | 9.3373          |
| 3.1789 | 19000 | 1.4116        | 9.6509          |
| 3.2625 | 19500 | 1.4036        | 9.9127          |
| 3.3462 | 20000 | 1.5392        | 9.8093          |
| 3.4298 | 20500 | 1.5791        | 9.8325          |
| 3.5135 | 21000 | 1.5343        | 9.7822          |
| 3.5971 | 21500 | 1.3913        | 9.6243          |
| 3.6808 | 22000 | 1.5151        | 9.9644          |
| 3.7644 | 22500 | 1.3922        | 9.7816          |
| 3.8481 | 23000 | 1.3361        | 9.5338          |
| 3.9317 | 23500 | 1.3363        | 9.8282          |
| 4.0154 | 24000 | 1.2234        | 10.2117         |
| 4.0990 | 24500 | 0.5927        | 10.4107         |
| 4.1827 | 25000 | 0.6879        | 10.4405         |
| 4.2664 | 25500 | 0.6832        | 10.5138         |
| 4.3500 | 26000 | 0.6514        | 10.2798         |
| 4.4337 | 26500 | 0.7396        | 10.3250         |
| 4.5173 | 27000 | 0.6813        | 10.4115         |
| 4.6010 | 27500 | 0.765         | 10.1365         |
| 4.6846 | 28000 | 0.5915        | 10.2402         |
| 4.7683 | 28500 | 0.5028        | 10.3197         |
| 4.8519 | 29000 | 0.5306        | 10.3270         |
| 4.9356 | 29500 | 0.5886        | 10.3543         |


### Framework Versions
- Python: 3.9.21
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->