Upload 2 files
Browse files- _Create_Instance.py +261 -0
_Create_Instance.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## CREATE MODEL FROM SCRATCH
|
| 2 |
+
|
| 3 |
+
## TOBE REMOVED
|
| 4 |
+
# pip install reportlab
|
| 5 |
+
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig,AutoConfig
|
| 7 |
+
import time
|
| 8 |
+
import torch
|
| 9 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 10 |
+
import random
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
from transformers import TrainingArguments
|
| 13 |
+
from trl import SFTTrainer
|
| 14 |
+
from peft import LoraConfig
|
| 15 |
+
# from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
|
| 16 |
+
from torch.nn import CrossEntropyLoss
|
| 17 |
+
torch.autograd.set_detect_anomaly(True)
|
| 18 |
+
random_seed = 42
|
| 19 |
+
torch.manual_seed(random_seed)
|
| 20 |
+
random.seed(random_seed)
|
| 21 |
+
# Set the device for each process
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
# torch.cuda.set_device(device)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
n_ahead_talk_global = 4
|
| 28 |
+
n_passes_global = 2
|
| 29 |
+
n_ahead_global = 8
|
| 30 |
+
n_examples = 0
|
| 31 |
+
|
| 32 |
+
def model_init(params):
|
| 33 |
+
original = False
|
| 34 |
+
if params is None:
|
| 35 |
+
params = {}
|
| 36 |
+
else:
|
| 37 |
+
params = params.params
|
| 38 |
+
# save params to file
|
| 39 |
+
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
| 40 |
+
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
| 41 |
+
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
| 42 |
+
gumbel_temperature = params.get("gumbel_temperature", 1)
|
| 43 |
+
use_start_thought_token = params.get("use_start_thought_token", True)
|
| 44 |
+
use_end_thought_token = params.get("use_end_thought_token", True)
|
| 45 |
+
include_policy_loss = params.get("include_policy_loss", True)
|
| 46 |
+
gumbel_detach = params.get("gumbel_detach", True)
|
| 47 |
+
merged_talk_heads = params.get("merged_talk_heads", True)
|
| 48 |
+
residual_think_head = params.get("residual_think_head", False)
|
| 49 |
+
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
| 50 |
+
|
| 51 |
+
model_id = "LeroyDyer/_Spydaz_Web_AI_V2_Aligned"
|
| 52 |
+
tokenizer_id = model_id
|
| 53 |
+
print("Loading model")
|
| 54 |
+
|
| 55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
+
model_id,
|
| 57 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 58 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
| 59 |
+
merged_talk_heads=merged_talk_heads,
|
| 60 |
+
merged_lm_and_talk_heads=False,
|
| 61 |
+
merged_lm_and_think_heads=True,
|
| 62 |
+
use_concat_talk_head=True,
|
| 63 |
+
use_shallow_think=True,
|
| 64 |
+
use_shallow_talk=False,
|
| 65 |
+
use_complex_think_head=False,
|
| 66 |
+
use_complex_talk_head=True,
|
| 67 |
+
use_weighted_talk_head=True,
|
| 68 |
+
trust_remote_code=True,
|
| 69 |
+
device_map="auto",
|
| 70 |
+
)
|
| 71 |
+
print("Loaded model")
|
| 72 |
+
|
| 73 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
|
| 74 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 75 |
+
|
| 76 |
+
special_tokens_to_add = []
|
| 77 |
+
if model.use_start_thought_token:
|
| 78 |
+
special_tokens_to_add.append("<|startthought|>")
|
| 79 |
+
if model.use_end_thought_token:
|
| 80 |
+
special_tokens_to_add.append("<|endthought|>")
|
| 81 |
+
if special_tokens_to_add:
|
| 82 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
| 83 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 84 |
+
model.tokenizer = tokenizer
|
| 85 |
+
for name, module in model.named_modules():
|
| 86 |
+
if "embed" in name:
|
| 87 |
+
print(module, flush=True)
|
| 88 |
+
|
| 89 |
+
model.gumbel_detach = gumbel_detach
|
| 90 |
+
model.include_policy_loss = include_policy_loss
|
| 91 |
+
model.use_end_thought_token = use_end_thought_token
|
| 92 |
+
model.use_start_thought_token = use_start_thought_token
|
| 93 |
+
model.n_ahead = n_ahead
|
| 94 |
+
model.n_ahead_talk = n_ahead_talk
|
| 95 |
+
model.n_passes = n_passes
|
| 96 |
+
model.residual_think_head = residual_think_head
|
| 97 |
+
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
| 98 |
+
model.gumbel_temperature = gumbel_temperature
|
| 99 |
+
model.original_mode = original
|
| 100 |
+
model.config_params = params
|
| 101 |
+
return model,tokenizer
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
model,tokenizer = model_init(None)
|
| 107 |
+
|
| 108 |
+
model
|
| 109 |
+
tokenizer.save_pretrained("IModel")
|
| 110 |
+
model.save_pretrained("IModel")
|
| 111 |
+
|
| 112 |
+
import os
|
| 113 |
+
import huggingface_hub
|
| 114 |
+
from huggingface_hub import notebook_login
|
| 115 |
+
from huggingface_hub import create_repo, HfApi
|
| 116 |
+
from huggingface_hub import hf_hub_download
|
| 117 |
+
from huggingface_hub import create_repo, HfApi
|
| 118 |
+
from huggingface_hub import snapshot_download
|
| 119 |
+
WRITE_TOKEN=""
|
| 120 |
+
username = "LeroyDyer"
|
| 121 |
+
huggingface_hub.login(WRITE_TOKEN)
|
| 122 |
+
api = HfApi(token=WRITE_TOKEN)
|
| 123 |
+
|
| 124 |
+
MODEL_NAME = "_Spydaz_Web_AI_MistralStar"
|
| 125 |
+
Folderinput = "IModel"
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# Create empty repo
|
| 129 |
+
api.create_repo(
|
| 130 |
+
repo_id = f"{username}/{MODEL_NAME}",
|
| 131 |
+
repo_type="model",
|
| 132 |
+
exist_ok=True,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
api.upload_folder(
|
| 136 |
+
repo_id = f"{username}/{MODEL_NAME}",
|
| 137 |
+
folder_path = Folderinput
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
import huggingface_hub
|
| 144 |
+
from trl import SFTTrainer
|
| 145 |
+
from transformers import TrainingArguments
|
| 146 |
+
from datasets import load_dataset
|
| 147 |
+
from unsloth import FastLanguageModel
|
| 148 |
+
import torch
|
| 149 |
+
WRITE_TOKEN = ""
|
| 150 |
+
username = "LeroyDyer"
|
| 151 |
+
huggingface_hub.login(WRITE_TOKEN)
|
| 152 |
+
|
| 153 |
+
MODEL_ID = "LeroyDyer/_Spydaz_Web_AI_MistralStar"
|
| 154 |
+
max_seq_length = 1512 # Choose any! We auto support RoPE Scaling internally!
|
| 155 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 156 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 157 |
+
|
| 158 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 159 |
+
model_name = MODEL_ID, # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
|
| 160 |
+
max_seq_length = max_seq_length,
|
| 161 |
+
dtype = dtype,
|
| 162 |
+
load_in_4bit = load_in_4bit,
|
| 163 |
+
#token = "", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
| 164 |
+
)
|
| 165 |
+
model = FastLanguageModel.get_peft_model(
|
| 166 |
+
model,
|
| 167 |
+
r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
| 168 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 169 |
+
"gate_proj", "up_proj", "down_proj"],
|
| 170 |
+
lora_alpha = 64,
|
| 171 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
| 172 |
+
bias = "none", # Supports any, but = "none" is optimized
|
| 173 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
| 174 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
| 175 |
+
random_state = 644993,
|
| 176 |
+
use_rslora = False, # We support rank stabilized LoRA
|
| 177 |
+
loftq_config = None, # And LoftQ
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 183 |
+
|
| 184 |
+
### Instruction:
|
| 185 |
+
{}
|
| 186 |
+
|
| 187 |
+
### Input:
|
| 188 |
+
{}
|
| 189 |
+
|
| 190 |
+
### Response:
|
| 191 |
+
{}"""
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
| 195 |
+
def formatting_prompts_func(examples):
|
| 196 |
+
instructions = examples["instruction"]
|
| 197 |
+
inputs = examples["input"]
|
| 198 |
+
outputs = examples["output"]
|
| 199 |
+
texts = []
|
| 200 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
| 201 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
| 202 |
+
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
| 203 |
+
texts.append(text)
|
| 204 |
+
return { "text" : texts, }
|
| 205 |
+
pass
|
| 206 |
+
|
| 207 |
+
from datasets import load_dataset
|
| 208 |
+
dataset = load_dataset("gate369/Alpaca-Star", split = "train[:1000]")
|
| 209 |
+
dataset = dataset.shuffle(seed=9969)
|
| 210 |
+
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
from trl import SFTTrainer
|
| 214 |
+
from transformers import TrainingArguments
|
| 215 |
+
from unsloth import is_bfloat16_supported
|
| 216 |
+
from unsloth import UnslothTrainer, UnslothTrainingArguments
|
| 217 |
+
|
| 218 |
+
trainer = UnslothTrainer(
|
| 219 |
+
model = model,
|
| 220 |
+
tokenizer = tokenizer,
|
| 221 |
+
train_dataset = dataset,
|
| 222 |
+
dataset_text_field = "text",
|
| 223 |
+
max_seq_length = max_seq_length,
|
| 224 |
+
dataset_num_proc = 8,
|
| 225 |
+
args = UnslothTrainingArguments(
|
| 226 |
+
per_device_train_batch_size = 10,
|
| 227 |
+
gradient_accumulation_steps = 8,
|
| 228 |
+
|
| 229 |
+
warmup_ratio = 0.1,
|
| 230 |
+
num_train_epochs = 2,
|
| 231 |
+
|
| 232 |
+
learning_rate = 2e-4,
|
| 233 |
+
embedding_learning_rate = 2e-5,
|
| 234 |
+
output_dir = "outputs",
|
| 235 |
+
save_strategy = "steps",
|
| 236 |
+
save_steps = 50,
|
| 237 |
+
fp16 = not is_bfloat16_supported(),
|
| 238 |
+
bf16 = is_bfloat16_supported(),
|
| 239 |
+
logging_steps = 1,
|
| 240 |
+
optim = "adamw_8bit",
|
| 241 |
+
weight_decay = 0.00,
|
| 242 |
+
lr_scheduler_type = "cosine",
|
| 243 |
+
seed = 3607,
|
| 244 |
+
),
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
trainer_stats = trainer.train()
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
# Merge to 16bit
|
| 252 |
+
if False: model.save_pretrained_merged("LCARS_AI_015", tokenizer, save_method = "merged_16bit",)
|
| 253 |
+
if True: model.push_to_hub_merged("_Spydaz_Web_AI_STAR_Aligned", tokenizer, save_method = "merged_16bit", token = "")
|
| 254 |
+
|
| 255 |
+
# Merge to 4bit
|
| 256 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit_forced",)
|
| 257 |
+
if True: model.push_to_hub_merged("_Spydaz_Web_AI_STAR_Aligned_4_BIT", tokenizer, save_method = "merged_4bit_forced", token = "")
|
| 258 |
+
|
| 259 |
+
# Just LoRA adapters
|
| 260 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
|
| 261 |
+
if False: model.push_to_hub_merged("Test_Lora", tokenizer, save_method = "lora", token = "")
|