File size: 79,078 Bytes
909b013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ff355c0e-c42c-4e5e-a2bf-f860afb7a1e4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train set: 25000 ejemplos\n",
"Test set: 25000 ejemplos\n",
"\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>text</th>\n",
" <th>label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>I rented I AM CURIOUS-YELLOW from my video sto...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>\"I Am Curious: Yellow\" is a risible and preten...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>If only to avoid making this type of film in t...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>This film was probably inspired by Godard's Ma...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Oh, brother...after hearing about this ridicul...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" text label\n",
"0 I rented I AM CURIOUS-YELLOW from my video sto... 0\n",
"1 \"I Am Curious: Yellow\" is a risible and preten... 0\n",
"2 If only to avoid making this type of film in t... 0\n",
"3 This film was probably inspired by Godard's Ma... 0\n",
"4 Oh, brother...after hearing about this ridicul... 0"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHCCAYAAADy9P3IAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPmxJREFUeJzt3Q28jHX+//HP4bgv97nbFJsKsYQNJSVCVJTalKKitqJ1U2uzSnSnFKEbttrudilpo6JEVFrkNpFQW4q2RbtuziL383+8v7+95n/NmMP3nA5n5szr+XiM48x8z8w11928r+/dZEQikYgBAADgsAod/mEAAAAIoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQnwtGfPHnvooYfsvffey+9FAQDkA0ITDjF06FDLyMg4Jq91/vnnu1vgww8/dK/9+uuv27Gm19V7z86AAQNswoQJ1rRp02OyPNdff73VqFHDkkn89kp3r732mpUvX9527NiR34uSMpJxv07nc/iLL77oyn777bdHbXmaNWtmAwcOtIKA0FTABQdEcCtevLhVq1bN2rVrZ2PHjrX//ve/efI6P/zwgztQly9fbgX1w3Hq1Kn27rvvWtmyZa0g++KLL9y2PJon0byimj9tl/xw4MABu/fee+3222+34447Luax+fPnW4sWLaxkyZJWpUoV+93vfpdWwSpVzgfaJtqG7du3d+FX50idMwui/DxW/vCHP9hTTz1lGzdutJSn755DwfXCCy/ouwUj9913X+Qvf/lL5Pnnn4889NBDkbZt20YyMjIiJ598cuSzzz6L+Zt9+/ZFfvrppxy9zuLFi93r6PVyYs+ePe4W+OCDD9zzTJ48OXKs6T3rvcc7ePBgZOTIkYesp6OtR48ebvsca1r32gbaFkfaXvmtVKlSbj3lhylTprhj6Pvvv4+5/9NPP40UL148cuaZZ0bGjRsXGTx4cKRYsWKR9u3bR9LF4c4He/fujezevTuSDNatW+eW86STToqcf/75uTqHJaNE5/DsjpX9+/e7sjrPHS0HDhyIVKlSJXLPPfdEUl1mfoc2HBsXXXSRNWnSJPr7oEGDbM6cOXbxxRfbpZdeaqtXr7YSJUq4xzIzM93taNq1a5e7Ci9atKglC9XCJaKrTzXNwZJqe+W3F154wc455xz7xS9+EXP/H//4RytXrpxrai5durS7T81RN910k82cOdPatm1r6axIkSKWLKpWrWr/+te/XG3gkiVL7Ne//rUVBDk5hxcuXNjdjqZChQrZFVdcYS+//LINGzbsmHX/OBponktjF1xwgd1zzz323Xff2V//+tfDtofPmjXLNTeoaUpNEaeffrr7cBB9OAQnmxtuuCHaFBhUc6sPTL169Wzp0qXWsmVLF5aCv82uj4yaPlRGJ7NSpUq5YLdhw4aYMvogUv+IeImec/fu3e59nXbaaS4c6WR5+eWX29dff33YPk2ffvqpC5z68NP7bt26tX3yyScJm0DnzZvnwtUJJ5zglvmyyy6zH3/80Xyo2lzrSMumn1OmTElY7uDBgzZ69Gg744wzXNnKlSvbb3/7W9u6davX66xZs8advNQUob9XkH7rrbdi3suVV17p/t+qVavottQ2zm7dfv/999a5c2f3nitVqmT9+/d3neXDf5fT7aVO92o2qVWrlhUrVsyqV6/u+kTo/oCef+fOnfbSSy9FlzN4fu3Tt912m9tPdTFQoUIF977imxz37dvnTuKnnnqqWx8qp/1c+/vhaH+aMWOGtWnTJub+rKws97fXXnttNDBJ9+7d3f6jZt6fS+9Rz/XPf/7TrXf9X/vcnXfe6Y6b3OwvKqd9X033Oj617dVMG7/NtmzZ4l6nfv367nX1HnV8fPbZZ9EyRzofhPs0af1rX1S5eFqXWma9XmDz5s3Ws2dP9z70WIMGDdz2zy3tWzrHHE1673369HH9IbU/arkbN25sc+fOPaSsz/nGZ5+NP4cf7liJ79OkC+lf/vKXCd9L8+bNYy6+9+/fb/fff7+dcsopbl1qu+q8HT5OAxdeeKE7LpO9yfZIqGlKc9ddd53byXUFrCvhRFatWuUOpF/96ld23333uYPjH//4hwsJUqdOHXf/kCFD7Oabb7Zzzz3X3X/22WdHn+M///mPOxl07drVfaDopHc4Dz74oDuQ1RauE6VO/PqA0gEX1Ij50geJln/27Nnu9fv27ev6cukk8/nnn7sDPrv3rfeiE5g+sHWF/Kc//cl9wH/00UeHdAhX3xbVMOjDXicgLbNOlpMmTTrs8mndd+nSxerWrWvDhw9360ofIieeeOIhZfWBp5OcHlc/mXXr1tmTTz7pTrbaHoe7itf7CWpG7rrrLhdy9CGuD96//e1vLuQp1Op51d9N+4W2rQQ/4/3000/uxL5+/Xr3d/rQ/ctf/uJqMXNLH+AKyX//+9/d/qTXXrlypT3++OP25ZdfRvtl6HV69eplZ511lisnwbZcvHix61ek7a31qO0xbtw4t+0UBhQMgg8XrfPgefRBrRqHZcuWuZN8dnQBsHfvXmvUqFHM/VpOfZCEP1iCGrqGDRu67RT+8Nu+fbvXOlGw0NV6eJ9Wv0Ttg4899pi9//77NnLkSPf+b7311hzvL6p5HjFihF1yySXueRWC9FPhMOybb75x618BtGbNmrZp0yZ3TJx33nluvWr7+5wPAnp97XdvvPGGe55wTaZeRx++2obBvqbtp3OPjiu9/uTJk92H/7Zt29xxfbT7P8Wvj0T0nsqUKRNzn84XOg9oG+j8+fTTT7t+VIsWLXIXSTk53+Rmnz3csRLvqquuciFfx1C45k2B55NPPrFHH300ep+eU0FMF2J33HGHLVy40C2bWi7iL/wUFEX73ZlnnmkpK7/bB3Fs+jSpj0F2ypQp4/pfBO699173N4HHH3/c/f7jjz/mqg/Deeed5x4bP358wsd0i+/T9Itf/CKSlZUVvf+1115z948ZMyZ6n/r7JGqjj39O9ePS344aNeqQsuF2fJXRew907tw5UrRo0cjXX38dve+HH36IHH/88ZGWLVseso7btGkT83z9+/ePFC5cOLJt27bI4TRs2DBStWrVmHIzZ850zxnu0/Txxx+7+yZMmBDz9zNmzEh4f7zWrVtH6tevH9OfRMt79tlnR0499VSvPk3x63b06NGurLZPYOfOnZFatWod8hy+20t97woVKuTeb5j2Hz3nvHnzjthPY9euXYfct2DBAvf3L7/8cvS+Bg0aRDp27BjJqeeee84918qVK2PuD9bd3LlzD/mbK6+80vXriN/XfW7qexPQ+w36KYbpGG7cuHGO95eNGzdGMjMz3f4eNnToUFcuvH6176h/SpiWTX22wstzuPNBfF+99957z5V9++23Y8p16NAh8stf/vKQfe2vf/1rTP+o5s2bR4477riY80VuHKlfZrDej3QL78sS3L9kyZLofd99953r93bZZZfl+Hzjs8/Gn8MPd6wE569gH9u+fbvbnnfccUdMuREjRrg+fFp2Wb58ufu7Xr16xZS788473f1z5sw55LX0/m699dZIKqN5Dq4a+HCj6ILRYm+++aarBcgNXV0lqoLPjq50jj/++OjvupJRk9o777yT49dWLUrFihVdTVC87NrWdSWvGiDVwoSrqrUM11xzjasF0RVemK7gws+nq0Y9j67QsqP+FKo969GjR8zVqa4YVfMUpqtqldFj//73v6M3XcFpG37wwQfZvo6aVVT785vf/MZt6+BvVaulGoWvvvrKNffklLaH1om2T0C1OMHVbG7ofaq2onbt2jHvU83Jcrj3GQjXRqpGR+9TTX3al3VFHtDvusLX+88JPZ+oZjFMtSHB/h5PTSnB46KmJdV2+twSNSHdcsstMb9rf1NNUE73F9XAqnZMzZlhiY4Xva+gxkv7ttZD0FwfXq85oe2q4zNcI6vmQ71v1XqE9zWth6uvvjp6n2pjgpGJqo05mlT747OtVOOXqFkrqGmRk046yTp16uSasbUec3K+ye0+6ytoclUt9P9lvv+j7dOsWTO37BKci+P7e6rGSaZPn37Ic+t40T6YymiegzvhqC9KdnTieu6551xVrJp11Byj/kD6oAw3GRyOmoRy0olY7fVhCiP60MvNMHj1W9JJPSed29UXSZ3V9Xfx9IGu8Kg+VuorEghOJoHgA/Vw/Y2CQBX/fiX+g0gnSTXnZLet1IyZHTVp6ASoPmy6Zff38Z2aj0TLr+0SHz4TrTdfep+q3lc/neyW80gUTtRMoM7aCoPhk3+4SUzNSPrwUl83NZOoyURN1mqK9hF+3nBYS9SnQ0074TCn/SO+T5QvBbD49aPnC+9rvvtLsA9qO8Y3CcaHQu33Y8aMcc1LauoL96FS35rc0HGp5umJEye69aZgpuY6hd1waNJy6jiJP+cETceHuzjJC7qIib+Q8ZXo+NY+p3NM0O/R93zzc/dZH1rvah5dsGCBa1bVOVRN0qNHj46W0frWtojfbxRsFewSbQ8dL6ncCVwITWlOnXh1Yo3f8cN0olenRV2Z6upBHWB11aErRF0d+Yy8yGk/JB+HqyU62qNBEsnuNeM/WHNLJ059AKpDaSLZhYzgb0WdalWzlMjh9oFjub20rOpoPGrUqITl1Sn8SFRLosDUr18/d5WvGhe9vvrHhGtL1YdLHwiqRdW+rIsD9Z0aP368u0jIThAQFFLCfc9UMxDUIMbTferzE1CfKNUA+tC2Da8jn/375+wvh5vrR6H7xhtvdB2Ag75WWs+5rYUWbRf139E8aKptUS2HahpVG5csdJ4M1xRmRxeHWi9HS2732ZxQ3zbVGGs7KDTpp7bzlf8bJBKWkxCkvmeqVUxlhKY0pw6Ckt0HaUAHjGqYdNOHmU6egwcPdkFKV8t5ffUQX/Ws4KHakvDVlK6CdRDG0xVOuIpbHR7VQVFXrr7DnfWBopPG2rVrE45A0/rw+fA+kpNPPtn9TFTVHv/aeh/q8KvO3DkNocH60Ps/Uu1GTralll+d6eOvIBOtt5xsL3VE1r52pGXJ7nHNKK8mz3BTiWp6Er1+MHpLN9W66kNJnW0P9wGkD3RRbYsCXkBX/qo5UcdcNYWGA5KaYcP3qaO6Rqn50OvkdBZt3/0l2Ad1fKlzdUBNb/G1pFqvWuY///nPh/0wzOn5QOtcgVMXYxoJpqZknV/il3PFihUunIVrm3Q8ht/H0aKO5j4j9dQpPjxqNLvjW4MadI4JwmtOzje52Wdzsk00SESDZ9TEq/O9touaf6uFQr/Wt7aF3lt4oIgGB2h/iN8eqvHVcZDdoJJUQZ+mNKYTk64WdaLs1q1btuUSXQ1rJFC4GUIHmST6UMoNzecR7melk7Wu1NXWHv5Q0GgOHYiBadOmHTI1gar+1Y6uUUO+tUC6ktd8OrqaCzcJ6oSgZgSd2MNDynNLHxRalzoZh5uN1DdCo5HC9IGrWhlts3jqk3K4da8aB43C0dV8olqQ8NQIOdmWHTp0cLM/h7/2Rs0MzzzzzCFlfbeX3qdOsM8+++whz6ErfQ2dDi9rouXU9ovftk888cQhQ/KDvkkB9c9RjVui5rUw9U9RjYLCUZhqtBRKNYVHeP/VxYk+3MJX6j+3T9OR+O4vCqcKehpdGJboeEm0XvXBGt8fLqfng2Aen7ffftutKy1fuGku2Nc0o3S475PKabtquymsJGufJjVzhZvatc/r3KJzTDBPku/5Jrf7bHbHSna0/nVsqyZLFzGJtoeEm+wkqCHu2LFjzP1q3stuFGUqoaYpTajaW1csOsnoQFRg0gGuqwHN05PdxI6iNnQ1z+kgUHn1hVCfBjVL6GAOPhDVjq0qYnXg1gGqIbLhK9ec0JWUnltXUlpeHZg6MYSnRdBVlT6s1aavDwhVWevDKn4orTqVK4Spw6KG+OqKSR+8ugpX51f1D0jkgQceiM5PpXL6YFHo0MlJw7PzivreaN3qddTsoZCqDwL1Xwh/9YY+FDSEXOVVa6GTrGqOdKWnDy71NQl3yI6nrzHQa6hmROtRtTtatzqhq5k2mGtHIU4n8UceecQFOfUxUVNsor4xeh59uGod66SoEKgPvWBIf5jv9lL/DDUHqKOzajJVU6IPf+2/ul+dZ4Mh/Qov2o46UesqWPub9jtdJWs5FGLUD0XvUeXi+93oMYVJPY/2OYUgLaOGtB+Ojhetfz2njo/46TL0waDtpQ7xWrf6IFV5vfe86NPkw3d/0fQfqkXRMmqqBy2j9gWdM1R7FK6h0HrV+9VxqfeoKRbU/Bc/r09uzgf6UNZ+ryk7tI/G10hoXer40xQD2tdU86ZtpSHsOj+EB46ojC5EfGrotP8qTCggiIKbtlnQzBsM0Pg5fZpUA6na/PCUA6L5lnJ6vsntPpvdsZIdhSKtUzXp63ygi88whX7V5uoCSetP+5vOr1rvamKNr0XVe1O/z5SebkDye/gejq5gOGlw05BPDXu+8MIL3fD9RMN044erzp49O9KpU6dItWrV3N/r59VXXx358ssvY/7uzTffjNStW9cNXw4P3dUQ3DPOOCPh8mU35cArr7wSGTRoUKRSpUqREiVKuCG2wVDXMH29iaYn0BDZc845xw3rjX/OYAi6vs6iZs2akSJFirh1cMUVV8QM742fckCWLVsWadeunRvSXLJkyUirVq0i8+fP95rWIXgviYbux/vb3/4WqVOnjnsfWodvvPFGtl+j8swzz7ih5VovGo6saQQGDhzohicfid5v9+7d3fvXetC6u/jiiyOvv/56TLlnn33WDffWlAnh95Bo3Wq7XHrppW79VKxYMdK3b9/osPb49+67vTSU/JFHHnH7jcqWK1fOvedhw4a5IdGBNWvWuOHYWhfh4fFbt26N3HDDDW55tO20DVU2ftqDBx54IHLWWWdFypYt656jdu3akQcffNC9/pFoG2kI9vr16w95TMP9NZWDhpWfcMIJkd69e//sIfEBLb+Gj/sMM/fdX/RVGvqKC+0XKnfBBRdEVq9eHalQoULklltuiZlyQEPRNUWGymkbaiqHRNswu/NBdvu1pr+oXr26K6vtksimTZui21XnIr2XRFMEdOnSxS2f9oMj0bL4TPWQW3oebX9NlaCpPbQ/a3qIROcFn/ONzz6baF/I7liJn3IgrFu3btHpVLL7upZhw4ZFz6vafjpvx39Njqap0D5z9913R1Jdhv7J7+AGoGBRnw5daaqmKNGM7wWBar901a9as0RNYKlOtQeqDVMNSHz/omSn2jPVfoYnYswvqqnr3bt3wubOdDF16lQ3dYJql4PBEqmKPk0AkAtqslBTlZo9w82oqSjRqLCgr0qqhV7NYaT3o28TQHJ45JFHXPNhqgcmoU8TAOSS+uHEd5BNRepcra9bUT8WdSzWZIqvvPKK6welPmWpRH0B4yeeRf5asGCBFRSEJgBIc5rKQx2P1eFYgSPoHK6mOQD/H32aAAAAPNCnCQAAwAOhCQAAwAN9mvKIppPX5GiaDCzVv5AQAIB0EYlE3Az+mvTzSF9CT2jKIwpMefFdZAAA4NjT19uEv4A7EUJTHgmm8NdKz4vvJAMAAEefRoyq0iP8VTzZITTlkaBJToGJ0AQAQGrx6VpDR3AAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPmT6FgMOpcdf0/F4EHEPfPtwxvxcBxxDHd3rh+D48apoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAACSPTTNnTvXLrnkEqtWrZplZGTY1KlTo4/t27fP/vCHP1j9+vWtVKlSrkz37t3thx9+iHmOLVu2WLdu3ax06dJWtmxZ69mzp+3YsSOmzIoVK+zcc8+14sWLW/Xq1W3EiBGHLMvkyZOtdu3aroxe85133jmK7xwAAKSafA1NO3futAYNGthTTz11yGO7du2yZcuW2T333ON+vvHGG7Z27Vq79NJLY8opMK1atcpmzZpl06ZNc0Hs5ptvjj6elZVlbdu2tZNPPtmWLl1qjz76qA0dOtSeeeaZaJn58+fb1Vdf7QLXp59+ap07d3a3zz///CivAQAAkCoyIpFIxJKAapqmTJniwkp2Fi9ebGeddZZ99913dtJJJ9nq1autbt267v4mTZq4MjNmzLAOHTrY999/72qnxo0bZ4MHD7aNGzda0aJFXZm77rrL1WqtWbPG/X7VVVe5AKfQFWjWrJk1bNjQxo8f77X8CmdlypSx7du3u1qvdMJ3U6UXvpsqvXB8p5d0PL6zcvD5nVJ9mvSGFK7UDCcLFixw/w8Ck7Rp08YKFSpkCxcujJZp2bJlNDBJu3btXK3V1q1bo2X0d2Eqo/uzs2fPHreiwzcAAFBwpUxo2r17t+vjpGa0IAmq9qhSpUox5TIzM618+fLusaBM5cqVY8oEvx+pTPB4IsOHD3fJNLiprxQAACi4UiI0qVP4b37zG1NLoprbksGgQYNczVdw27BhQ34vEgAAOIoyLUUCk/oxzZkzJ6a9sUqVKrZ58+aY8vv373cj6vRYUGbTpk0xZYLfj1QmeDyRYsWKuRsAAEgPhVIhMH311Vf2/vvvW4UKFWIeb968uW3bts2NigsoWB08eNCaNm0aLaMRdXqugEbanX766VauXLlomdmzZ8c8t8rofgAAgHwPTZpPafny5e4m69atc/9fv369CzlXXHGFLVmyxCZMmGAHDhxwfYx027t3rytfp04da9++vd100022aNEimzdvnvXp08e6du3qRs7JNddc4zqBazoBTU0wadIkGzNmjA0YMCC6HH379nWj7kaOHOlG1GlKAr2ungsAACDfQ5OCyZlnnuluoiCj/w8ZMsT++c9/2ltvveWmDtDQ/6pVq0ZvmlcpoEClSSlbt27tphpo0aJFzBxM6qQ9c+ZMF8gaN25sd9xxh3v+8FxOZ599tk2cONH9neaNev31192UBPXq1TvGawQAACSrpJmnKdUxTxPSRTrO45LOOL7TSzoe31kFdZ4mAACA/EJoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAASPbQNHfuXLvkkkusWrVqlpGRYVOnTo15PBKJ2JAhQ6xq1apWokQJa9OmjX311VcxZbZs2WLdunWz0qVLW9myZa1nz562Y8eOmDIrVqywc88914oXL27Vq1e3ESNGHLIskydPttq1a7sy9evXt3feeecovWsAAJCK8jU07dy50xo0aGBPPfVUwscVbsaOHWvjx4+3hQsXWqlSpaxdu3a2e/fuaBkFplWrVtmsWbNs2rRpLojdfPPN0cezsrKsbdu2dvLJJ9vSpUvt0UcftaFDh9ozzzwTLTN//ny7+uqrXeD69NNPrXPnzu72+eefH+U1AAAAUkVGRNU5SUA1TVOmTHFhRbRYqoG644477M4773T3bd++3SpXrmwvvviide3a1VavXm1169a1xYsXW5MmTVyZGTNmWIcOHez77793fz9u3DgbPHiwbdy40YoWLerK3HXXXa5Wa82aNe73q666ygU4ha5As2bNrGHDhi6w+VA4K1OmjFtG1Xqlkxp3Tc/vRcAx9O3DHfN7EXAMcXynl3Q8vrNy8PmdtH2a1q1b54KOmuQCelNNmza1BQsWuN/1U01yQWASlS9UqJCrmQrKtGzZMhqYRLVVa9euta1bt0bLhF8nKBO8TiJ79uxxKzp8AwAABVfShiYFJlHNUph+Dx7Tz0qVKsU8npmZaeXLl48pk+g5wq+RXZng8USGDx/uQlxwU18pAABQcCVtaEp2gwYNclV5wW3Dhg35vUgAACAdQ1OVKlXcz02bNsXcr9+Dx/Rz8+bNMY/v37/fjagLl0n0HOHXyK5M8HgixYoVc22f4RsAACi4kjY01axZ04WW2bNnR+9TvyH1VWrevLn7XT+3bdvmRsUF5syZYwcPHnR9n4IyGlG3b9++aBmNtDv99NOtXLly0TLh1wnKBK8DAACQr6FJ8yktX77c3YLO3/r/+vXr3Wi6fv362QMPPGBvvfWWrVy50rp37+5GxAUj7OrUqWPt27e3m266yRYtWmTz5s2zPn36uJF1KifXXHON6wSu6QQ0NcGkSZNszJgxNmDAgOhy9O3b1426GzlypBtRpykJlixZ4p4LAABAMvNzNSiYtGrVKvp7EGR69OjhphUYOHCgmwpA8y6pRqlFixYu3GgCysCECRNcuGndurUbNdelSxc3t1NAnbRnzpxpvXv3tsaNG1vFihXdhJnhuZzOPvtsmzhxot199932xz/+0U499VQ3JUG9evWO2boAAADJLWnmaUp1zNOEdJGO87ikM47v9JKOx3dWQZinCQAAIJkQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAAFI9NB04cMDuueceq1mzppUoUcJOOeUUu//++y0SiUTL6P9DhgyxqlWrujJt2rSxr776KuZ5tmzZYt26dbPSpUtb2bJlrWfPnrZjx46YMitWrLBzzz3XihcvbtWrV7cRI0Ycs/cJAACSX1KHpkceecTGjRtnTz75pK1evdr9rjDzxBNPRMvo97Fjx9r48eNt4cKFVqpUKWvXrp3t3r07WkaBadWqVTZr1iybNm2azZ07126++ebo41lZWda2bVs7+eSTbenSpfboo4/a0KFD7Zlnnjnm7xkAACSnTEti8+fPt06dOlnHjh3d7zVq1LBXXnnFFi1aFK1lGj16tN19992unLz88stWuXJlmzp1qnXt2tWFrRkzZtjixYutSZMmroxCV4cOHeyxxx6zatWq2YQJE2zv3r32/PPPW9GiRe2MM86w5cuX26hRo2LCFQAASF9JXdN09tln2+zZs+3LL790v3/22Wf297//3S666CL3+7p162zjxo2uSS5QpkwZa9q0qS1YsMD9rp9qkgsCk6h8oUKFXM1UUKZly5YuMAVUW7V27VrbunVrwmXbs2ePq6EK3wAAQMGV1DVNd911lwsjtWvXtsKFC7s+Tg8++KBrbhMFJlHNUph+Dx7Tz0qVKsU8npmZaeXLl48po35T8c8RPFauXLlDlm348OE2bNiwPH2/AAAgeSV1TdNrr73mms4mTpxoy5Yts5deesk1qelnfhs0aJBt3749etuwYUN+LxIAAEjXmqbf//73rrZJfZOkfv369t1337lanh49eliVKlXc/Zs2bXKj5wL6vWHDhu7/KrN58+aY592/f78bURf8vX7qb8KC34My8YoVK+ZuAAAgPSR1TdOuXbtc36MwNdMdPHjQ/V9Nago16vcUUHOe+io1b97c/a6f27Ztc6PiAnPmzHHPob5PQRmNqNu3b1+0jEbanX766Qmb5gAAQPpJ6tB0ySWXuD5M06dPt2+//damTJniRrRddtll7vGMjAzr16+fPfDAA/bWW2/ZypUrrXv37m5EXOfOnV2ZOnXqWPv27e2mm25yo+7mzZtnffr0cbVXKifXXHON6wSu+Zs0NcGkSZNszJgxNmDAgHx9/wAAIHkkdfOcpgbQ5Ja33Xaba2JTyPntb3/rJrMMDBw40Hbu3OmmBlCNUosWLdwUA5qkMqB+UQpKrVu3djVXXbp0cXM7hUfczZw503r37m2NGze2ihUrutdgugEAABDIiISn10auqVlQ4UudwjXzeDqpcdf0/F4EHEPfPvx/86YhPXB8p5d0PL6zcvD5ndTNcwAAAMmC0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAHA0v7BXX4775z//2VavXu1+P+OMM+zGG290398CAABQ0OSqpmnJkiV2yimn2OOPP25btmxxt1GjRrn7li1blvdLCQAAkIo1Tf3797dLL73Unn32WcvM/L+n2L9/v/Xq1cv69etnc+fOzevlBAAASL3QpJqmcGByT5SZaQMHDrQmTZrk5fIBAACkbvNc6dKlbf369Yfcv2HDBjv++OPzYrkAAABSPzRdddVV1rNnT5s0aZILSrq9+uqrrnnu6quvzvulBAAASMXmuccee8wyMjKse/furi+TFClSxG699VZ7+OGH83oZAQAAUjM0FS1a1MaMGWPDhw+3r7/+2t2nkXMlS5bM6+UDAABI/cktf/jhB3erVauWC0yRSCTvlgwAACDVQ9N//vMfa926tZ122mnWoUMH+9e//uXuVz+nO+64I6+XEQAAIDVDk+ZpUh8mjaALN8mpg/iMGTPycvkAAABSt0/TzJkz7b333rMTTzwx5v5TTz3Vvvvuu7xaNgAAgNSuadq5c2fCTt/6OpVixYrlxXIBAACkfmg699xz7eWXX47+rukHDh48aCNGjLBWrVrl5fIBAACkbvOcwpE6guvrVPbu3eu+PmXVqlWupmnevHl5v5QAAACpWNNUr149+/LLL61FixbWqVMn11x3+eWX26effurmawIAAChoclXTpFFz1atXt8GDByd87KSTTsqLZQMAAEjtmqaaNWvajz/+mHD+Jj0GAABQ0OQqNGnmb3X+jrdjxw4rXrx4XiwXAABA6jbPDRgwwP1UYLrnnntiph04cOCALVy40Bo2bJj3SwkAAJBKoUkdvYOappUrV7ov7g3o/w0aNLA777wz75cSAAAglULTBx984H7ecMMNNmbMGCtduvTRWi4AAIDUHz33wgsv5P2SAAAAFLTQpHmZHn74YZs9e7Zt3rzZzQYe9s033+TV8gEAAKRuaOrVq5d99NFHdt1111nVqlUTjqQDAACwdA9N7777rk2fPt3OOeecvF8iAACAgjJPU7ly5ax8+fJ5vzQAAAAFKTTdf//9NmTIENu1a1feLxEAAEBBaZ4bOXKkff3111a5cmWrUaOGFSlSJObxZcuW5dXyAQAApG5o6ty5c94vCQAAQEELTffee2/eLwkAAEBBC02BpUuX2urVq93/zzjjDDvzzDPzarkAAABSPzRpQsuuXbvahx9+aGXLlnX3bdu2zVq1amWvvvqqnXDCCXm9nAAAAKk3eu7222+3//73v7Zq1SrbsmWLu33++eeWlZVlv/vd7/J+KQEAAFIxNM2YMcOefvppq1OnTvS+unXr2lNPPeUmvsxL//znP+3aa6+1ChUqWIkSJax+/fq2ZMmS6OORSMRNf6CZyfV4mzZt7Kuvvop5DoW6bt26uS8YVs1Yz549bceOHTFlVqxYYeeee64VL17cqlevbiNGjMjT9wEAANIwNOm75uKnGRDdF/89dD/H1q1b3azjel6FsS+++MJNd6DJNQMKN2PHjrXx48fbwoULrVSpUtauXTvbvXt3tIwCk2rFZs2aZdOmTbO5c+fazTffHH1cNWRt27a1k08+2fXTevTRR23o0KH2zDPP5Nl7AQAAadin6YILLrC+ffvaK6+8YtWqVYvWCPXv399at26dZwv3yCOPuFqfF154IXpfzZo1Y2qZRo8ebXfffbd16tTJ3ffyyy+7+aOmTp3q+l2po7pqxhYvXmxNmjRxZZ544gnr0KGDPfbYY275J0yYYHv37rXnn3/eihYt6jq1L1++3EaNGhUTrgAAQPrKVU3Tk08+6WpnNLHlKaec4m4KM7pPgSSvvPXWWy7oXHnllVapUiU3Ou/ZZ5+NPr5u3TrbuHGja5ILlClTxpo2bWoLFixwv+unmuSCwCQqX6hQIVczFZRp2bKlC0wB1VatXbvW1XYlsmfPHvd+wzcAAFBw5aqmSbU/mvX7/ffftzVr1rj71L8pHF7ywjfffGPjxo2zAQMG2B//+EdXW6SO5go3PXr0cIFJVLMUpt+Dx/RTgSssMzPTfXdeuEy4Biv8nHos3BwYGD58uA0bNixP3y8AACggNU1z5sxxHb5Vq5KRkWEXXnihG0mn269//WvXrPXxxx/n2cKpf1SjRo3soYcecrVMaiq76aabXP+l/DZo0CDbvn179LZhw4b8XiQAAJAsoUn9hxRaNAotnprFfvvb37p+QHlFI+IU0sJUo7V+/Xr3/ypVqrifmzZtiimj34PH9FPzSoXt37/fjagLl0n0HOHXiFesWDG3HsI3AABQcOUoNH322WfWvn37bB/XCDSNPssrGjmnfkVhX375pRvlJmpSU6iZPXt29HHVgqmvUvPmzd3v+qmJN8PLpRoz1WKp71NQRiPq9u3bFy2jkXann356wqY5AACQfnIUmlT7kmiqgXBfoR9//NHyikbjffLJJ6557h//+IdNnDjRTQPQu3dv97iaCPv162cPPPCA6zS+cuVK6969uxsRF3ypsGqmFPRUQ7Zo0SKbN2+e9enTx42sC0b+XXPNNa6flOZv0tQEkyZNsjFjxri+VAAAADnuCP6LX/zCzfxdq1athI9rgkg1qeUV9ZOaMmWK6z903333uZolNRFq3qXAwIEDbefOna6/k2qUWrRo4aYY0CSVAU0poKCk6RA0aq5Lly5ubqdw0+LMmTNdGGvcuLFVrFjRTZjJdAMAACCQEdFkR57U4VvfN6dRbOFQIj/99JOdddZZ7vvnwoEkXahZUOFLncLTrX9Tjbum5/ci4Bj69uGO+b0IOIY4vtNLOh7fWTn4/M5RTZMmkXzjjTfstNNOczU36vMjmnZAX6Fy4MABGzx48M9begAAgCSUo9CkuYvmz59vt956q2syCyqp1LdIk0EqOMXPmQQAAJCWk1tq5No777zjZspW52wFp1NPPZVRZgAAoEDL1YzgopCkjtoAAADpIFffPQcAAJBuCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAFLTQ9/PDDlpGRYf369Yvet3v3buvdu7dVqFDBjjvuOOvSpYtt2rQp5u/Wr19vHTt2tJIlS1qlSpXs97//ve3fvz+mzIcffmiNGjWyYsWKWa1atezFF188Zu8LAAAkv5QJTYsXL7Y//elP9qtf/Srm/v79+9vbb79tkydPto8++sh++OEHu/zyy6OPHzhwwAWmvXv32vz58+2ll15ygWjIkCHRMuvWrXNlWrVqZcuXL3ehrFevXvbee+8d0/cIAACSV0qEph07dli3bt3s2WeftXLlykXv3759u/35z3+2UaNG2QUXXGCNGze2F154wYWjTz75xJWZOXOmffHFF/bXv/7VGjZsaBdddJHdf//99tRTT7kgJePHj7eaNWvayJEjrU6dOtanTx+74oor7PHHH8+39wwAAJJLSoQmNb+pJqhNmzYx9y9dutT27dsXc3/t2rXtpJNOsgULFrjf9bN+/fpWuXLlaJl27dpZVlaWrVq1Klom/rlVJniORPbs2eOeI3wDAAAFV6YluVdffdWWLVvmmufibdy40YoWLWply5aNuV8BSY8FZcKBKXg8eOxwZRSEfvrpJytRosQhrz18+HAbNmxYHrxDAACQCpK6pmnDhg3Wt29fmzBhghUvXtySyaBBg1zzYHDTsgIAgIIrqUOTmt82b97sRrVlZma6mzp7jx071v1ftUHql7Rt27aYv9PouSpVqrj/62f8aLrg9yOVKV26dMJaJtEoOz0evgEAgIIrqUNT69atbeXKlW5EW3Br0qSJ6xQe/L9IkSI2e/bs6N+sXbvWTTHQvHlz97t+6jkUvgKzZs1yIadu3brRMuHnCMoEzwEAAJDUfZqOP/54q1evXsx9pUqVcnMyBff37NnTBgwYYOXLl3dB6Pbbb3dhp1mzZu7xtm3bunB03XXX2YgRI1z/pbvvvtt1Lldtkdxyyy325JNP2sCBA+3GG2+0OXPm2GuvvWbTp0/Ph3cNAACSUVKHJh+aFqBQoUJuUkuNaNOot6effjr6eOHChW3atGl26623ujCl0NWjRw+77777omU03YACkuZ8GjNmjJ144on23HPPuecCAACQjEgkEmFV/HwaaVemTBnXKTzd+jfVuIsauXTy7cMd83sRcAxxfKeXdDy+s3Lw+Z3UfZoAAACSBaEJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAAAg1UPT8OHD7de//rUdf/zxVqlSJevcubOtXbs2pszu3butd+/eVqFCBTvuuOOsS5cutmnTppgy69evt44dO1rJkiXd8/z+97+3/fv3x5T58MMPrVGjRlasWDGrVauWvfjii8fkPQIAgNSQ1KHpo48+coHok08+sVmzZtm+ffusbdu2tnPnzmiZ/v3729tvv22TJ0925X/44Qe7/PLLo48fOHDABaa9e/fa/Pnz7aWXXnKBaMiQIdEy69atc2VatWply5cvt379+lmvXr3svffeO+bvGQAAJKeMSCQSsRTx448/upoihaOWLVva9u3b7YQTTrCJEyfaFVdc4cqsWbPG6tSpYwsWLLBmzZrZu+++axdffLELU5UrV3Zlxo8fb3/4wx/c8xUtWtT9f/r06fb5559HX6tr1662bds2mzFjhteyZWVlWZkyZdwylS5d2tJJjbum5/ci4Bj69uGO+b0IOIY4vtNLOh7fWTn4/E7qmqZ4ekNSvnx593Pp0qWu9qlNmzbRMrVr17aTTjrJhSbRz/r160cDk7Rr186tpFWrVkXLhJ8jKBM8RyJ79uxxzxG+AQCAgitlQtPBgwdds9k555xj9erVc/dt3LjR1RSVLVs2pqwCkh4LyoQDU/B48NjhyigI/fTTT9n2t1IyDW7Vq1fPw3cLAACSTcqEJvVtUvPZq6++aslg0KBBruYruG3YsCG/FwkAABxFmZYC+vTpY9OmTbO5c+faiSeeGL2/SpUqroO3+h6Fa5s0ek6PBWUWLVoU83zB6LpwmfgRd/pdbZslSpRIuEwaZacbAABID0ld06Q+6gpMU6ZMsTlz5ljNmjVjHm/cuLEVKVLEZs+eHb1PUxJoioHmzZu73/Vz5cqVtnnz5mgZjcRTIKpbt260TPg5gjLBcwAAAGQme5OcRsa9+eabbq6moA+S+hCpBkg/e/bsaQMGDHCdwxWEbr/9dhd2NHJONEWBwtF1111nI0aMcM9x9913u+cOaopuueUWe/LJJ23gwIF24403uoD22muvuRF1AAAASV/TNG7cONdf6Pzzz7eqVatGb5MmTYqWefzxx92UAprUUtMQqKntjTfeiD5euHBh17SnnwpT1157rXXv3t3uu+++aBnVYCkgqXapQYMGNnLkSHvuuefcCDoAAICUm6cpmTFPE9JFOs7jks44vtNLOh7fWQV1niYAAID8QmgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGiK89RTT1mNGjWsePHi1rRpU1u0aFF+LxIAAEgChKaQSZMm2YABA+zee++1ZcuWWYMGDaxdu3a2efPm/F40AACQzwhNIaNGjbKbbrrJbrjhBqtbt66NHz/eSpYsac8//3x+LxoAAMhnmfm9AMli7969tnTpUhs0aFD0vkKFClmbNm1swYIFh5Tfs2ePuwW2b9/ufmZlZVm6ObhnV34vAo6hdNzH0xnHd3pJx+M763/vORKJHLEsoel//v3vf9uBAwescuXKMffr9zVr1hxSfvjw4TZs2LBD7q9evfpRXU4gv5UZnd9LAOBoSefj+7///a+VKVPmsGUITbmkGin1fwocPHjQtmzZYhUqVLCMjIx8XTYcmysTBeQNGzZY6dKl83txAOQhju/0EolEXGCqVq3aEcsSmv6nYsWKVrhwYdu0aVPM/fq9SpUqh5QvVqyYu4WVLVv2qC8nkotOqJxUgYKJ4zt9lDlCDVOAjuD/U7RoUWvcuLHNnj07pvZIvzdv3jxflw0AAOQ/appC1NzWo0cPa9KkiZ111lk2evRo27lzpxtNBwAA0huhKeSqq66yH3/80YYMGWIbN260hg0b2owZMw7pHA6oaVbzecU30QJIfRzfyE5GxGeMHQAAQJqjTxMAAIAHQhMAAIAHQhMAAIAHQhMAAIAHQhMAAIAHphwAPL+b8Pnnn3df3qzpKEQzxZ999tl2/fXX2wknnJDfiwgAOMqoaQKOYPHixXbaaafZ2LFj3VT7LVu2dDf9X/fVrl3blixZkt+LCeAo0XfQ3Xjjjfm9GEgCzNMEHEGzZs2sQYMGNn78+EO+jFmHzy233GIrVqxwtVAACp7PPvvMGjVqZAcOHMjvRUE+o3kO8Dhhvvjii4cEJtF9/fv3tzPPPDNflg3Az/fWW28d9vFvvvnmmC0LkhuhCTgC9V1atGiRa4ZLRI/xVTtA6urcubO7ADpcw0uiiyakH0ITcAR33nmn3XzzzbZ06VJr3bp1NCBt2rTJZs+ebc8++6w99thj+b2YAHKpatWq9vTTT1unTp0SPr58+XJr3LjxMV8uJB9CE3AEvXv3tooVK9rjjz/uTqxBv4bChQu7E6ma7n7zm9/k92ICyCUdx7ooyi40HakWCumDjuBADuzbt89NPyAKUkWKFMnvRQLwM3388ce2c+dOa9++fcLH9ZhGyJ533nnHfNmQXAhNAAAAHpinCQAAwAOhCQAAwAOhCQAAwAOhCQAAwAOhCUDaGDp0qDVs2DC/FwNAiiI0AUhJ119/vZs/J/4WDBvX/6dOnXrIRKWakPRYI6wBBQOTWwJIWQpIL7zwQsx9xYoVy7b8cccd524AkBvUNAFIWQpI+m7A8K1cuXJWo0YN9/hll13mapyC3+NrfDS7+4ABA6xs2bJWoUIFGzhwoPXo0cN9F1lAfzt69OiY19Vz6LkC27Zts169etkJJ5xgpUuXtgsuuMB90bNoxvhhw4a534PaMN0no0aNsvr161upUqWsevXqdtttt9mOHTuO8loDkFuEJgAFzuLFi91P1UL961//iv4eb+TIkS7APP/88/b3v//dtmzZYlOmTMnx61155ZW2efNme/fdd93XcTRq1Mh9T6Ge76qrrrI77rjDzjjjDLcsuuk+KVSokI0dO9ZWrVplL730ks2ZM8cFNwDJidAEIGVNmzYt2uQW3B566CFX4yOqQVLtU/B7PNUgDRo0yC6//HKrU6eOjR8/3sqUKZOjZVDYWrRokU2ePNmaNGlip556qvsCZ73266+/biVKlHDLlZmZGa0N033Sr18/a9WqlavNUu3UAw88YK+99loerBkARwN9mgCkLAWOcePGxdxXvnx5r7/dvn27q/Vp2rRp9D4FGwWfnHy7lJrd1KSm5r2wn376yb7++uvD/u37779vw4cPtzVr1lhWVpbt37/fdu/ebbt27bKSJUt6LwOAY4PQBCBlqS9QrVq1juprqAktPkTpi5sDCkxVq1a1Dz/88JC/VW1Tdr799lu7+OKL7dZbb7UHH3zQhT3VWvXs2dP27t1LaAKSEKEJQIFUpEgR19E7O2qGU9hZuHChtWzZ0t2nmp6gT1JATXuqkQqoRmjdunXR31V248aNrpYq6HAer2jRoocsi17n4MGDrl+VgpnQNAckN/o0AUhZe/bscYElfPv3v//tHlOA0ZxMum/r1q0J/75v37728MMPu/mc1ESm0WsaCRemvkZ/+ctf7OOPP7aVK1e60XWFCxeOPt6mTRtr3ry5G3E3c+ZMV4M0f/58Gzx4sC1ZsiS6LApay5cvd8un5VYNmWqsnnjiCfvmm2/ca6hPFYDkRWgCkLJmzJjhaovCtxYtWrjHVIMza9YsN5T/zDPPTPj3GtV23XXXuSCk4HP88ce7aQrC1FH8vPPOc01pHTt2dOHolFNOiT6uKQTeeecdV1t1ww032GmnnWZdu3a17777zipXruzKdOnSxc0ppT5Yqrl65ZVXrEGDBm7KgUceecTq1atnEyZMcP2bACSvjEhOejwCQBrMNK7apvjZxAGAmiYAAAAPhCYAAAAPNM8BAAB4oKYJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAjuz/Ab+ULIwnsjQyAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"count 25000.00000\n",
"mean 1325.06964\n",
"std 1003.13367\n",
"min 52.00000\n",
"25% 702.00000\n",
"50% 979.00000\n",
"75% 1614.00000\n",
"max 13704.00000\n",
"Name: length, dtype: float64"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAASlFJREFUeJzt3QmczfX++PE3Y4xByE7Gcin7rnCT7EJd4tdts1ToEgldW0mDREpSkSRL93It90aF7Pu+ZCcpQtla7MPYvv/H+3P+3+OcMzPmO+PMzDlnXs/H4zjO9/uZ7/l+3+d7znmfz/bNYFmWJQAAALitjLdfDQAAAEXSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEpICVK1dKhgwZzH1qqFevnrkll+5rdHS0hLJRo0ZJjhw55Mknn5Tff/9dKlSoINu3b0+TfXnppZekcePGafLc8K8//vhDsmXLJgsWLEjrXUEqIGlCUJoyZYr5ot+6dasEi+nTp8sHH3yQ1ruRbo0YMUIGDBggJ06ckPz580tERIRUrlw51ffj8OHDMnHiRHnttdeS9fc7d+6U+vXrS506deSBBx6QmTNnSijat2+fSeR//vlnCWR58uSRTp06yRtvvJHWu4JUQNIEpIC6devK5cuXzb2NpCltbdy40SRNq1evll9//VU2b94sGTOm/kfgmDFjpESJEibxSarz589LkyZNpHPnzrJ27VqZMWOGvPjii+bYQjFpGjx4cMAnTapLly7y3XffyfLly9N6V5DCSJqAFKBfxlmyZEmTL+VAdPPmTbly5Uqa7kPJkiXd/y9UqJCEhYWl+j5cu3ZNpk2bJn//+9+T9ffz5s2TzJkzyzPPPGMe/+Uvf5GWLVvK5MmTJS1dunRJgkVK7GvZsmVNc6/WgCO08YmOkKZ9Vpo1a2b6smTPnl0aNmwY51e53dS3bt066d27t+TLl8/0UXj88cflt99+i/Plr00GhQsXlqxZs5raAv1FXLx4cXnuuecS7NOk/Y3mz58vR44cMcv1pn/j+fy+v6gT6hc1YcIEkwBERkaa5pk1a9Y4jkdsbKz06tXLHONdd90lf/vb3+SXX36Jt6zWxrzwwgtSoEAB05RVvnx5mTRpkqPn0f3u3r27SRD07/TvFy5cmKTtfvTRR2adxvnuu++WGjVqmNq6pO6jHcdZs2bJsGHDpEiRIiah1XPhxx9/9CqrsXziiSekaNGiZntRUVEmXlpr6OnkyZPy/PPPm21pOU3CNHlJrFZEa4e0P1WjRo2StY/6Wuk6T/fcc48cO3ZMErNp0yZp3ry5iaWe35UqVTK1XrZdu3aZc1gTMX3uggULmthqnx1Pev7rvup5r8mbbk+bCpOyDfu169ixo3kvaQy19q1r165y9epV857Q10Hpe8x+z3i+F7799lt56KGHzLHoudyiRQvZu3ev13Povuj7/qeffjLHruWeffZZ93tZa371nNF91XPoH//4h5w5c8ZrG9oFoGnTppI3b17zntP91GPypX3UvvnmG7EsK9HXAsErU1rvAJBS9ANUP1Q1Yerbt6+Eh4fLp59+ahKYVatWSc2aNb3Kv/zyy+YL4M033zRffvqBql/8nn1GtHln5MiR8thjj5kPUu1foveJ1aK8/vrrcu7cOfOlN3r0aLNMP8yT6vPPPzcf7H/961+lZ8+ecujQIZP45M6d23zBJ0b7Xvz73/82X3a6DW1O0C8bX6dOnZJatWq5kx9NsvRLSr/ktIlInzsxum1NAvTv9QtHk0Sn2/3ss8+kR48e8n//93/yyiuvmPjqF7J+8du1LEndR+3TpDV///znP81roa+jfoHqNm2zZ8+WmJgY8+WtfVW0CU+TN33ddJ2tTZs25vzSc0aP6/Tp07JkyRI5evSoOxmOz/r1683+Vq1aNd71ie2jJkjHjx+Pk3z4JlK+dN8effRRk9xpPDWZ2b9/v6m50sd2GT2fNBnU9Xp8mqDrvf7Q0P32pEnNvffeK2+//bY7UXC6DT0GTfjPnj1rmhfLlCljjuO///2vib82a+vr/+GHH5q+X1qTo+z7f/3rX9KhQwfz3nvnnXfM33zyyScmedMfSp6vwfXr1005Xffee++ZJFzp+0iTM91XfS7ta/bxxx+bv9cfUPp5oa+rNofqudW/f3/JlSuX+Wz48ssv48S4evXq5r2tx6q1TghRFhCEJk+erJ/S1pYtWxIs06pVKytz5szWTz/95F52/Phx66677rLq1q0bZ1uNGjWybt686V7eq1cvKywszDp79qx5fPLkSStTpkxmu56io6PN33fo0MG9bMWKFWaZ3ttatGhhFStWLMFjOXz4sNdy321cvXrVyp8/v1WlShUrNjbWXW7ChAmm3MMPP3zbmO3YscOUe+mll7yWP/PMM2b5m2++6V7WsWNHq1ChQtbvv//uVfapp56ycubMacXExNz2uXR7GTNmtPbu3eu13Ol2W7ZsaZUvX/62z+F0W3Ycy5Yt6xW3MWPGmOW7d+92L4vvuIYPH25lyJDBOnLkiHl85swZ83fvvvuulVRt27a18uTJE2e5033UczFv3rzWrFmzzGM9t/V8XrduXYLPef36datEiRLm3NN99+R5vsd37P/5z3/M869evdq9TM8TXfb000/HKe90G+3btzfnR3zvX3ufZs+eHec9pC5cuGDlypXL6ty5s9dyfX/q6+65XN+Tuo3+/ft7lV2zZo1ZPm3aNK/lCxcu9Fo+Z86cRD9nbOvXrzdlZ86cmWhZBC+a5xCSbty4IYsXL5ZWrVqZpgKb/tLWmgptJtHaCE/6i9fz17TWUul2tElNLVu2zPxq1eHinrS2ITVoM4H+8tVOp9qvxbMJImfOnIn+vT0kWn9Ve/KtkdGc53//+5+pTdP/a3OSfdNf7FoDop1eE/Pwww9LuXLlkrVd/UWvtTtbtmyJd9vJ2UetUfCMm76+SmtGbNr84tn3RbenNXL6HPb0BFpGt6NNRb5NOYnRZiqtzUxIYvuor/OiRYtk7NixZp1OnzB+/HizjwnR/dZaFH2dNa6ePM93z2PXmj09dq3JU/G93noe+nKyDW0Wmzt3rnnttMnVl2+Nli+tzdIaqqefftrrddc+alp7vGLFijh/ozWHnrTWUGOpTWqe29DaIq0Btrdhx0tr5LQ/2u3Yr6tuB6GL5jmEJO2LpFX2pUuXjrNOq/j1g1v7gWh/Bpv2Y4nvQ9D+YrSTp1KlSnmV06ax230R+ov9/Nok4kmbETwTw9v9vTb9eHaIVr4x0tjpl5I2q+gtPpq8JUb7fiR3u/369ZOlS5eaJhyNtzaRaLL74IMPJnsfE3t9lTavDRo0SL7++us4CZEmYkr732iT0Kuvvmr6wWhSoE1f7du3N01Sibldnxcn+1itWrUkzf+l/XlUYk1Gf/75pxmtpiPyfGNnH/vtXl+n29DXTn+wJLcJ6+DBg+a+QYMG8a7X5nhPmTJlitN8qdvQ/dGpJ+Jj77sm/toUq8ekTW/atK8/xPRc1PMgvtc1saQPwY2kCfj/EhpNldIdOxP6kNVarrSgCaVq27at6TcSH+1EnBjPWoekblcT2wMHDphf+NqBXGuVxo0bZxIa/QJLzj4m9vpqvLXmQb/4NWnTfjbayVj72mhtnv2cSmtttKZEa0y05kfn6Bk+fLjpx5VQfyWl/aRuVzuV2D5qB/SnnnoqznrdP8+BCMmhI/q0z1WfPn2kSpUqpsZFj/mRRx7xOvaEXt/kbCM57O1ov6b4klRNkjxpcuM7ilW3oQmTDlSIj/Zhst+b2s9K+2NpJ299rbUTuE6Uqss8+yXar6v230PoImlCSNIPPe3wqV+8vr7//nvzIeqk47SnYsWKmXsdzeT5K1ubXJw00ySUHNm1CVpzEl/Nku/z669kz1/Z2mygzS+JTdSof69fFlrz4Fm75Bsje2SdJhG+o7zuRFK3qwmLNj/pTUdUtW7d2ows0874KbGPu3fvlh9++EGmTp1qao08m4PiozV2WtukN31NNEnQL1PtaJ8QTcT0i1prOZw0qfrSJCGps8zbNYt79uxJMFZ6/mrzsyakmpj61uo44XQb+tppbZDuT3LeL/bxaNKT3Ndet6E1mVpzGV/y50trE/Wm55+O4NTO+VqbpgMrbPoe9OysjtBEnyaEJP3Frk06X331ldcwcB1xpR96OpLGtxo/MTr8W3/F6igdTzrixglNAuJr5rC/BHTSRZsmA77NTtr/Q79wtA+LJhE2HQHkm3DFR6deUDoiyZPvhJsaO22S0Nqd+L7YfKdhcCop2/Udoq79fLR/lNa4aJKYEvto1/J41izq/z2H5Stt9vUdLamvoSZxOqXD7dSuXdtsc9u2bZJatDlPk3x9nX3PE/tY4zt2lZTJWJ1uQ3+waBOX1tzEN6O//ff6flG++6x91vS9q6P24utn5OS11xoxfY8NHTo0zjrtt2g/pyaCvsejybHyfa31NdVE2LPJH6GHmiYENZ2Tx57/x5MOo37rrbdMLYEmSNp5WxMenXJAP+x0KHdSaf8V3a7WJugwf21y0CkHdJi7Vskn1pdBO5nq9AU6F9T9999vqva1iUc/ZPVXrNagaNOQ9pHSX7H64e3bd0mPSYdKa02T1sDor1ud2NBJnyb9sNfOs9rMpcmbdh7WmgHfuYrsoe/aGVY71urs05qw6L5pZ179ha7/Tw6n29WEV2tVtCZA467D4zU51ekRNDlJiX3UWiBNfnS4vzbJ6RezJmW+tYhaG6UJtH7x6nPqeTVnzhyTkMfXdOZJz0VtotP9S6hPjr9pkqKJvp5reg5oZ3MdEKE1rjo8Xpuc9Fh1mL++LzQR0akNdCCFXXviRFK2oQmPrtM+QzoAQ2tn9PI22kFbB2loB2zdV03EtP+Ynq/azKYx0xomPZ527dqZhFBjrj8mtD+azoWm50xiP2T0efV9pE2qO3bsMOebvr+0Vkz3QRNlne5Cax31/aJztum5ceHCBTMdhh6rzvvkST9rNMb0aQpxaT18D0gOe5h+Qrdjx46Zct99953VtGlTK3v27FbWrFmt+vXrm6HB8W3Ld1hxfNMG6PDtN954wypYsKAVGRlpNWjQwNq/f78ZRt6lS5fb/u3FixfN8H4dLq3rPKcf0KHjOuVBRESEVaBAAeu1116zlixZEu+Q63Hjxpkh5Fq2Ro0aZii3TjeQ2JQD6vLly1aPHj3M/mbLls167LHHTKx8pxxQp06dsrp162ZFRUVZ4eHh5pgbNmxopjhIjG5P/zY+Trb76aefmmkhdD/1OEuWLGn16dPHOnfuXJK3Zb8WOoTdk07xoMv19bft27fPvA56vujQfh2+vnPnTq9yOsWBPmeZMmVMDHWYe82aNd3TACRG41+qVCmvZUnZx+Rau3at1bhxYzNFge53pUqVrI8++si9/pdffrEef/xxc37qMT3xxBNmig7fc8OecuC3336L8xxOt6F0CgedeiBfvnzmNf7LX/5i4uo55cJnn31mluvUH77vBf2/vrf1ebJkyWLOkeeee87aunWr15QDeqwJ0fOkevXq5r2scalYsaLVt29fs8/254dOrVC0aFGzjzrlx6OPPur1HEo/A3T/li5dmoRXBMEog/6T1okbEMy0Kl/7JWktkE5iCdyOTh+gtVpaQ6k1Vgh+OjBAm9e1iY6aptBGnyYgCXwvp+HZZ0OHIwOJ0aZUnbVcmxcR/LT/3cSJE82PJhKm0EdNE5AE2ulab9qfQfskaf+L//znP6ZPhPYNAQCELjqCA0mgc/9ox1/t7KoT9Nmdw/VXJgAgtFHTBAAA4AB9mgAAABwgaQIAAHCAPk0O6KUnjh8/bibVY3QEAADBQXsg6aSkhQsXjnMNwuQgaXJAE6akXqcMAAAEhmPHjkmRIkXueDskTQ7Yl23QoCf1emUJ0csM6GUE7On70yvi4EIcXIiDC3G4hVi4EIfkxUFHOWulh/09fqdImhywm+Q0YfJn0pQ1a1azvfT+BiAOxMFGHFyIwy3EwoU43Fkc/NW1ho7gAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4EAmJ4UQHIr3n59omZ9HtEiVfQEAINRQ0wQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAABHrSVLx4ccmQIUOcW7du3cz6K1eumP/nyZNHsmfPLm3atJFTp055bePo0aPSokULyZo1q+TPn1/69Okj169f9yqzcuVKqVatmkREREipUqVkypQpqXqcAAAg+KVp0rRlyxY5ceKE+7ZkyRKz/IknnjD3vXr1km+++UZmz54tq1atkuPHj0vr1q3df3/jxg2TMF29elXWr18vU6dONQnRoEGD3GUOHz5sytSvX1927NghPXv2lE6dOsmiRYvS4IgBAECwStPLqOTLl8/r8YgRI6RkyZLy8MMPy7lz5+Tzzz+X6dOnS4MGDcz6yZMnS9myZWXjxo1Sq1YtWbx4sezbt0+WLl0qBQoUkCpVqsjQoUOlX79+Eh0dLZkzZ5bx48dLiRIlZNSoUWYb+vdr166V0aNHS9OmTdPkuAEAQPAJmGvPaW3Rv//9b+ndu7dpotu2bZtcu3ZNGjVq5C5TpkwZKVq0qGzYsMEkTXpfsWJFkzDZNBHq2rWr7N27V6pWrWrKeG7DLqM1TgmJjY01N9v58+fNve6P3vzB3o6/tqciwizHzxsoUiIOwYg4uBAHF+JwC7FwIQ7Ji4O/4xUwSdPcuXPl7Nmz8txzz5nHJ0+eNDVFuXLl8iqnCZKus8t4Jkz2envd7cpoInT58mWJjIyMsy/Dhw+XwYMHx1muNVvad8qf7CZJfxj5QOJlFixYIIHIn3EIZsTBhTi4EIdbiIULcUhaHGJiYiQkkyZtimvWrJkULlw4rXdFBgwYYGq8bJpgRUVFSZMmTSRHjhx+eQ7NfvVFb9y4sYSHh/tlmxWiE++ntSc6sJokUyIOwYg4uBAHF+JwC7FwIQ7Ji4PdUhRSSdORI0dMv6Qvv/zSvaxgwYKmyU5rnzxrm3T0nK6zy2zevNlrW/boOs8yviPu9LEmP/HVMikdZac3X/oC+ftk9ec2Y29kcPR8gSglYhuMiIMLcXAhDrcQCxfikLQ4+DtWATFPk3bw1ukCdJSbrXr16uZgly1b5l524MABM8VA7dq1zWO93717t5w+fdpdRjNQTYjKlSvnLuO5DbuMvQ0AAICgSJpu3rxpkqYOHTpIpky3Kr5y5swpHTt2NM1kK1asMB3Dn3/+eZPsaCdwpc1lmhy1a9dOdu7caaYRGDhwoJnbya4p6tKlixw6dEj69u0r33//vYwbN05mzZplpjMAAAAImuY5bZbT2qMXXnghzjqdFiBjxoxmUksdzaaj3jTpsYWFhcm8efPMaDlNprJly2aSryFDhrjL6HQD8+fPN0nSmDFjpEiRIjJx4kSmGwAAAMGVNGltkWXFP1Q+S5YsMnbsWHNLSLFixRIdEVavXj3Zvn37He8rAABIv9K8eQ4AACAYkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAADBkDT9+uuv0rZtW8mTJ49ERkZKxYoVZevWre71lmXJoEGDpFChQmZ9o0aN5ODBg17b+PPPP+XZZ5+VHDlySK5cuaRjx45y8eJFrzK7du2Shx56SLJkySJRUVEycuTIVDtGAAAQ/NI0aTpz5ow8+OCDEh4eLt9++63s27dPRo0aJXfffbe7jCY3H374oYwfP142bdok2bJlk6ZNm8qVK1fcZTRh2rt3ryxZskTmzZsnq1evlhdffNG9/vz589KkSRMpVqyYbNu2Td59912Jjo6WCRMmpPoxAwCA4JQpLZ/8nXfeMbU+kydPdi8rUaKEVy3TBx98IAMHDpSWLVuaZV988YUUKFBA5s6dK0899ZTs379fFi5cKFu2bJEaNWqYMh999JE0b95c3nvvPSlcuLBMmzZNrl69KpMmTZLMmTNL+fLlZceOHfL+++97JVcAAAABWdP09ddfm0TniSeekPz580vVqlXls88+c68/fPiwnDx50jTJ2XLmzCk1a9aUDRs2mMd6r01ydsKktHzGjBlNzZRdpm7duiZhsmlt1YEDB0xtFwAAQEDXNB06dEg++eQT6d27t7z22mumtqhHjx4muenQoYNJmJTWLHnSx/Y6vdeEy1OmTJkkd+7cXmU8a7A8t6nrPJsDVWxsrLl5Nu+pa9eumZs/2Nvx1/ZURJjl+HkDRUrEIRgRBxfi4EIcbiEWLsQheXHwd7zSNGm6efOmqSF6++23zWOtadqzZ4/pv6RJU1oZPny4DB48OM7yxYsXS9asWf36XNoPy19GPpB4mQULFkgg8mccghlxcCEOLsThFmLhQhySFoeYmBgJmaRJR8SVK1fOa1nZsmXlf//7n/l/wYIFzf2pU6dMWZs+rlKlirvM6dOnvbZx/fp1M6LO/nu917/xZD+2y3gaMGCAqf3yrGnSvlfamVxH6PmDZr/6ojdu3Nh0hPeHCtGLEi2zJ7qpBJKUiEMwIg4uxMGFONxCLFyIQ/LiYLcUhUTSpCPntF+Rpx9++MGMclPapKZJzbJly9xJkgZA+yp17drVPK5du7acPXvWjIqrXr26WbZ8+XJTi6V9n+wyr7/+ugm2HWQNeunSpeM0zamIiAhz86V/6++T1Z/bjL2RwdHzBaKUiG0wIg4uxMGFONxCLFyIQ9Li4O9YpWlH8F69esnGjRtN89yPP/4o06dPN9MAdOvWzazPkCGD9OzZU9566y3TaXz37t3Svn17MyKuVatW7pqpRx55RDp37iybN2+WdevWSffu3c3IOi2nnnnmGdNPSudv0qkJZs6cKWPGjPGqTQIAAAjYmqb7779f5syZY5rDhgwZYmqWdIoBnXfJ1rdvX7l06ZKZGkBrlOrUqWOmGNBJKm06pYAmSg0bNjSj5tq0aWPmdvIccaf9kTQZ09qovHnzmgkzmW4AAAAERdKkHn30UXNLiNY2aUKlt4ToSDmtpbqdSpUqyZo1a+5oXwEAQPqV5pdRAQAACAYkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAIGeNEVHR0uGDBm8bmXKlHGvv3LlinTr1k3y5Mkj2bNnlzZt2sipU6e8tnH06FFp0aKFZM2aVfLnzy99+vSR69eve5VZuXKlVKtWTSIiIqRUqVIyZcqUVDtGAAAQGtK8pql8+fJy4sQJ923t2rXudb169ZJvvvlGZs+eLatWrZLjx49L69at3etv3LhhEqarV6/K+vXrZerUqSYhGjRokLvM4cOHTZn69evLjh07pGfPntKpUydZtGhRqh8rAAAIXpnSfAcyZZKCBQvGWX7u3Dn5/PPPZfr06dKgQQOzbPLkyVK2bFnZuHGj1KpVSxYvXiz79u2TpUuXSoECBaRKlSoydOhQ6devn6nFypw5s4wfP15KlCgho0aNMtvQv9fEbPTo0dK0adNUP14AABCc0jxpOnjwoBQuXFiyZMkitWvXluHDh0vRokVl27Ztcu3aNWnUqJG7rDbd6boNGzaYpEnvK1asaBImmyZCXbt2lb1790rVqlVNGc9t2GW0xikhsbGx5mY7f/68udf90Zs/2Nvx1/ZURJjl+HkDRUrEIRgRBxfi4EIcbiEWLsQheXHwd7zSNGmqWbOmaU4rXbq0aZobPHiwPPTQQ7Jnzx45efKkqSnKlSuX199ogqTrlN57Jkz2envd7cpoInT58mWJjIyMs1+auOm++NKaLe075U9Llizx27ZGPpB4mQULFkgg8mccghlxcCEOLsThFmLhQhySFoeYmBgJmaSpWbNm7v9XqlTJJFHFihWTWbNmxZvMpJYBAwZI79693Y81wYqKipImTZpIjhw5/PIcmv3qi964cWMJDw/3yzYrRCfeT2tPdGA1SaZEHIIRcXAhDi7E4RZi4UIckhcHu6UoZJrnPGmt0n333Sc//vijCYh28D579qxXbZOOnrP7QOn95s2bvbZhj67zLOM74k4fa/KTUGKmo+z05ktfIH+frP7cZuyNDI6eLxClRGyDEXFwIQ4uxOEWYuFCHJIWB3/HKs1Hz3m6ePGi/PTTT1KoUCGpXr26Odhly5a51x84cMBMMaB9n5Te7969W06fPu0uoxmoJkTlypVzl/Hchl3G3gYAAEDAJ03//Oc/zVQCP//8s5ky4PHHH5ewsDB5+umnJWfOnNKxY0fTTLZixQrTMfz55583yY52AlfaXKbJUbt27WTnzp1mGoGBAweauZ3smqIuXbrIoUOHpG/fvvL999/LuHHjTPOfTmcAAAAQFM1zv/zyi0mQ/vjjD8mXL5/UqVPHTCeg/1c6LUDGjBnNpJY6mk1HvWnSY9MEa968eWa0nCZT2bJlkw4dOsiQIUPcZXS6gfnz55skacyYMVKkSBGZOHEi0w0AAIDgSZpmzJhx2/U6DcHYsWPNLSHacTyxEWH16tWT7du3J3s/AQAAAqpPEwAAQKAiaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAAZImAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcyCTJdOnSJVm1apUcPXpUrl696rWuR48eyd0sAABA6CRN27dvl+bNm0tMTIxJnnLnzi2///67ZM2aVfLnz0/SBAAAQk6ymud69eoljz32mJw5c0YiIyNl48aNcuTIEalevbq89957/t9LAACAYEyaduzYIa+++qpkzJhRwsLCJDY2VqKiomTkyJHy2muv+X8vAQAAgjFpCg8PNwmT0uY47dekcubMKceOHfPvHgIAAARrn6aqVavKli1b5N5775WHH35YBg0aZPo0/etf/5IKFSr4fy8BAACCsabp7bfflkKFCpn/Dxs2TO6++27p2rWr/PbbbzJhwgR/7yMAAEBw1jTVqFHD/X9tnlu4cKE/9wkAACDgMLklAACAP2uaqlWrJsuWLTNNcdqnKUOGDAmW/e6775xuFgAAILSSppYtW0pERIT5f6tWrVJynwAAAII3aXrzzTfj/T8AAEB6kKw+TTrdwKZNm+Is12Vbt271x34BAAAE/+i5bt26Sd++faVmzZpey3/99Vd555134k2oEBiK95+faJmfR7RIlX0BACDka5r27dtnOob70g7iug4AACDUJCtp0g7hp06dirP8xIkTkilTsiqvAAAAQi9patKkiQwYMEDOnTvnXnb27Flzsd7GjRv7c/8AAAACQrKqhd577z2pW7euFCtWzDTJqR07dkiBAgXM9ecAAABCTbKSpnvuuUd27dol06ZNk507d0pkZKQ8//zz8vTTT0t4eLj/9xIAACCNJbsDUrZs2eTFF1/0794AAACE2rXnDh48KBMmTJC33npLhgwZ4nVLjhEjRphLs/Ts2dO97MqVK2Z6gzx58kj27NmlTZs2cTqgHz16VFq0aCFZs2Y1Fw/u06ePXL9+3avMypUrzWg/7cBeqlQpmTJlSjKPGgAApFfJqmn67LPPpGvXrpI3b14pWLCg13Xo9P+DBg1K8mSZn376qVSqVMlrea9evWT+/Pkye/ZsyZkzp3Tv3l1at24t69atM+tv3LhhEibdh/Xr15vRe+3btzdNhG+//bYpc/jwYVOmS5cupjlRr5/XqVMnKVSokDRt2jQ5hw8AANKhZCVNWrs0bNgw6dev3x3vwMWLF+XZZ581iZhu16Yj8z7//HOZPn26NGjQwCybPHmylC1bVjZu3Ci1atWSxYsXm3mhli5dajqhV6lSRYYOHWr2Kzo6WjJnzizjx4+XEiVKyKhRo8w29O/Xrl0ro0ePJmkCAAApmzSdOXNGnnjiCfEHbX7TmqBGjRp5JU3btm2Ta9eumeW2MmXKSNGiRWXDhg0madL7ihUrmoTJpomQ1oLt3bvXjOzTMp7bsMt4NgP6io2NNTfb+fPnzb3uj978wd6Ov7anIsIsv2zHn/vk9LlS8zkDEXFwIQ4uxOEWYuFCHJIXB3/HK1lJkyZMWsujTV53YsaMGfLdd9+Z5jlfJ0+eNDVFuXLl8lquCZKus8t4Jkz2envd7cpoInT58mUz8s/X8OHDZfDgwXGW6zFr3yl/WrJkid+2NfIB/2xnwYIFktr8GYdgRhxciIMLcbiFWLgQh6TFISYmRtI8adLO1G+88YZpJtOaHt9pBnr06JHoNo4dOyavvPKKOfAsWbJIINGJO3v37u1+rAlWVFSUmdQzR44cfnkOzX712HUyUH9N01AhepFftrMnOvWaLVMiDsGIOLgQBxficAuxcCEOyYuD3VKUpkmTjprT0WyrVq0yN0/aEdxJ0qTNb6dPn/a6hp127F69erV8/PHHsmjRIrl69aqZadyztklHz2nHb6X3mzdv9tquPbrOs4zviDt9rMlPfLVMSkfZ6c2XvkD+Pln9uc3YG7c65N+JtHhDpkRsgxFxcCEOLsThFmLhQhySFgd/xypZSZOOSLtTDRs2lN27d3st0wkytd+SduTWmh09WB3tplMNqAMHDpgpBmrXrm0e6712SNfkS6cbUJqBakJUrlw5dxnf5iYtY28DAADAiTu6uq7WBGkCVbJkySRfqPeuu+6SChUqxJkwU+dkspd37NjRNJPlzp3bJEIvv/yySXa0E7jS5jJNjtq1aycjR440/ZcGDhxoOpfbNUXa70prrvr27SsvvPCCLF++XGbNmmWmMgAAAEjRyS21Y5UmNNopunz58qb2R2lSo5NU+otOC/Doo4+amia91p02tX355Zfu9WFhYTJv3jxzr8lU27ZtzTxNnhNs6nQDmiBp7VLlypXN1AMTJ05kugEAAJDyNU3aUVqvOaczbT/yyCPu5Tq0X+dH6t+/f3I2a7bnSTuIjx071twSohcNTmy0V7169WT79u3J2icAAIBkJ01z586VmTNnmmYyz9nAtdbpp59+IrIAACDkJKt57rfffnN3vPZ06dIlryQKAAAgXSdNNWrU8OpIbSdK2leIUWkAACAUJat5Ti+G26xZM3Pdt+vXr8uYMWPM//Wiub7zNgEAAKTbmqY6derIjh07TMKkM4Lr5UW0uU6v81a9enX/7yUAAECwztOkczN99tln/t0bAACAUEqa7HmZElK0aNHk7g8AAEDoJE3Fixe/7Sg5vYYcAACApPekyXeiSL3qsC57//33zbXgAAAAQk2ykia9HEl80xAULlxY3n33XWndurU/9g0AACC4R88lpHTp0rJlyxZ/bhIAACB4a5rOnz/v9diyLDlx4oS57ty9997rr30DAAAI7qQpV65ccTqCa+IUFRUlM2bM8Ne+AQAABHfStHz5cq+kKWPGjJIvXz4pVaqUZMqU7KmfAAAAAlayMpx69er5f08AAABCrSP48OHDZdKkSXGW67J33nnHH/sFAAAQ/EnTp59+KmXKlImzvHz58jJ+/Hh/7BcAAEDwJ00nT56UQoUKxVmu/Zp0FB0AAECoSVbSpKPk1q1bF2e5LtMJLgEAAEJNsjqCd+7cWXr27Gkun9KgQQOzbNmyZdK3b1959dVX/b2PAAAAwZk09enTR/744w956aWX5OrVq2ZZlixZpF+/fjJgwAB/7yMAAEBwJk06R5OOknvjjTdk//79EhkZaWYCj4iI8P8eAgAABPu157RD+J9//iklS5Y0CZPOCg4AABCKkpU0adNcw4YN5b777pPmzZu7R8x17NiRPk0AACAkJStp6tWrl4SHh8vRo0cla9as7uVPPvmkLFy40J/7BwAAELx9mhYvXiyLFi2SIkWKeC3Xfk1Hjhzx174BAAAEd03TpUuXvGqYbNq/ic7gAAAgFCUraXrooYfkiy++8BpNd/PmTRk5cqTUr1/fn/sHAAAQvM1zmhxpR/CtW7eaeZp0Usu9e/eamqb4ZgoHAABIlzVNFSpUkB9++EHq1KkjLVu2NM11rVu3lu3bt5vpBwAAACS91zTppVMeeeQRGT9+vLz++usps1cAAADBXtOkUw3s2rUrZfYGAAAglJrn2rZtK59//rn/9wYAACCUOoJfv35dJk2aJEuXLpXq1atLtmzZvNa///77/to/AACA4EuaDh06JMWLF5c9e/ZItWrVzDLtEO5Jpx8AAABI10mTzvit15lbsWKF+7IpH374oRQoUCCl9g8AACD4+jRZluX1+NtvvzXTDQAAAIS6ZHUETyiJSqpPPvlEKlWqJDly5DC32rVrm0TMduXKFenWrZvkyZNHsmfPLm3atJFTp055bUMvGtyiRQtzWZf8+fNLnz59TJ8rTytXrjTNiXqJl1KlSsmUKVPuaL8BAED6k6SkSfsr+fZZupM+THrB3xEjRsi2bdvM7OINGjQwk2Xq7OKqV69e8s0338js2bNl1apVcvz4cTOJpu3GjRsmYdJZydevXy9Tp041CdGgQYPcZQ4fPmzK6OVdduzYIT179pROnTqZCw4DAACkSJ8mrVl67rnn3Bfl1ZqgLl26xBk99+WXXzra3mOPPeb1eNiwYab2aePGjSah0mkNpk+fbpIpNXnyZClbtqxZX6tWLVm8eLHs27fPjOLTflVVqlSRoUOHSr9+/SQ6OloyZ85sJuEsUaKEjBo1ymxD/37t2rUyevRoadq0aVIOHwAApGNJqmnq0KGDaQLLmTOnuel8TYULF3Y/tm/JobVGM2bMMH2ktJlOa5909vFGjRq5y5QpU0aKFi0qGzZsMI/1vmLFil4d0TUROn/+vLu2Sst4bsMuY28DAADA7zVNWtPjb7t37zZJktZaab+lOXPmSLly5UxTmtYU5cqVy6u8JkgnT540/9d735F79uPEymhidfnyZYmMjIyzT7GxseZm07JKkzi9+YO9HX9tT0WE3VkfM5s/98npc6XmcwYi4uBCHFyIwy3EwoU4JC8O/o5Xsia39KfSpUubBOncuXPy3//+19Rmaf+ltDR8+HAZPHhwnOXaHKgdzv1pyZIlftvWyAf8s50FCxZIavNnHIIZcXAhDi7E4RZi4UIckhaHmJgYCamkSWuTdESb0tnFt2zZImPGjDFzQGkH77Nnz3rVNunouYIFC5r/6/3mzZu9tmePrvMs4zviTh/raL34apnUgAEDpHfv3l41TVFRUdKkSRPzd/6g2a++6I0bNzbX8/OHCtH+6dy+Jzr1+nqlRByCEXFwIQ4uxOEWYuFCHJIXB7ulKGSSJl83b940TWOaQGlAli1bZqYaUAcOHDBTDGhzntJ77Tx++vRp09dKaTA1sdEmPruMb82JlrG3ER/t6G53dvek++Pvk9Wf24y94Z/Z2NPiDZkSsQ1GxMGFOLgQh1uIhQtxSFoc/B2rNE2atEanWbNmpnP3hQsXzEg5nVNJpwPQDuUdO3Y0NT65c+c2idDLL79skh0dOae05keTo3bt2snIkSNN/6WBAweauZ3spEdH93388cfSt29feeGFF2T58uUya9YsmT9/floeOgAACDJpmjRpDVH79u3NpVk0SdKJLjVh0mo3pdMCZMyY0dQ0ae2TjnobN26c++/DwsJk3rx50rVrV5NM6dQH2idqyJAh7jI63YAmSDrnkzb76VQGEydOZLoBAAAQPEmTzsN0O1myZJGxY8eaW0KKFSuWaMflevXqyfbt25O9nwAAAHd0GRUAAID0gqQJAADAAZImAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAgUxOCiF9Kd5/fqJlfh7RIlX2BQCAQEFNEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOMC150LoenAAACDlUNMEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAACBnjQNHz5c7r//frnrrrskf/780qpVKzlw4IBXmStXrki3bt0kT548kj17dmnTpo2cOnXKq8zRo0elRYsWkjVrVrOdPn36yPXr173KrFy5UqpVqyYRERFSqlQpmTJlSqocIwAACA1pmjStWrXKJEQbN26UJUuWyLVr16RJkyZy6dIld5levXrJN998I7Nnzzbljx8/Lq1bt3avv3HjhkmYrl69KuvXr5epU6eahGjQoEHuMocPHzZl6tevLzt27JCePXtKp06dZNGiRal+zAAAIDhlSssnX7hwoddjTXa0pmjbtm1St25dOXfunHz++ecyffp0adCggSkzefJkKVu2rEm0atWqJYsXL5Z9+/bJ0qVLpUCBAlKlShUZOnSo9OvXT6KjoyVz5swyfvx4KVGihIwaNcpsQ/9+7dq1Mnr0aGnatGmaHDsAAAguaZo0+dIkSeXOndvca/KktU+NGjVylylTpowULVpUNmzYYJImva9YsaJJmGyaCHXt2lX27t0rVatWNWU8t2GX0Rqn+MTGxpqb7fz58+Ze90Vv/mBvx+n2IsIsCSRpFYdQRRxciIMLcbiFWLgQh+TFwd/xCpik6ebNmyaJefDBB6VChQpm2cmTJ01NUa5cubzKaoKk6+wyngmTvd5ed7symgxdvnxZIiMj4/S1Gjx4cJx91Fot7TflT9os6cTIBySgLFiwIE3iEOqIgwtxcCEOtxALF+KQtDjExMRISCZN2rdpz549ptksrQ0YMEB69+7tfqzJVVRUlOlvlSNHDr88h2a/+qI3btxYwsPDEy1fITqw+l/tiW6aJnEIVcTBhTi4EIdbiIULcUheHOyWopBKmrp37y7z5s2T1atXS5EiRdzLCxYsaDp4nz171qu2SUfP6Tq7zObNm722Z4+u8yzjO+JOH2sC5FvLpHSEnd586Qvk75PV6TZjb2SQQJJWcQh1xMGFOLgQh1uIhQtxSFoc/B2rNB09Z1mWSZjmzJkjy5cvN521PVWvXt0c8LJly9zLdEoCnWKgdu3a5rHe7969W06fPu0uo1moJkTlypVzl/Hchl3G3gYAAEBA1zRpk5yOjPvqq6/MXE12H6ScOXOaGiC979ixo2kq087hmgi9/PLLJtnRTuBKm8w0OWrXrp2MHDnSbGPgwIFm23ZtUZcuXeTjjz+Wvn37ygsvvGAStFmzZsn8+fPT8vABAEAQSdOapk8++cSMmKtXr54UKlTIfZs5c6a7jE4L8Oijj5pJLXUaAm1q+/LLL93rw8LCTNOe3msy1bZtW2nfvr0MGTLEXUZrsDRB0tqlypUrm6kHJk6cyHQDAAAgOGqatHkuMVmyZJGxY8eaW0KKFSuW6GguTcy2b9+erP0EAADg2nMAAAAOkDQBAAA4QNIEAADgAEkTAABAsExuieBTvH/i0zX8PKJFquwLAACpgZomAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAAZImAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHMjkpBCRH8f7zEy1zcGiTVNkXAADuFDVNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAAEetK0evVqeeyxx6Rw4cKSIUMGmTt3rtd6y7Jk0KBBUqhQIYmMjJRGjRrJwYMHvcr8+eef8uyzz0qOHDkkV65c0rFjR7l48aJXmV27dslDDz0kWbJkkaioKBk5cmSqHB8AAAgdaZo0Xbp0SSpXrixjx46Nd70mNx9++KGMHz9eNm3aJNmyZZOmTZvKlStX3GU0Ydq7d68sWbJE5s2bZxKxF1980b3+/Pnz0qRJEylWrJhs27ZN3n33XYmOjpYJEyakyjECAIDQkKYX7G3WrJm5xUdrmT744AMZOHCgtGzZ0iz74osvpECBAqZG6qmnnpL9+/fLwoULZcuWLVKjRg1T5qOPPpLmzZvLe++9Z2qwpk2bJlevXpVJkyZJ5syZpXz58rJjxw55//33vZIrAACAgE2abufw4cNy8uRJ0yRny5kzp9SsWVM2bNhgkia91yY5O2FSWj5jxoymZurxxx83ZerWrWsSJpvWVr3zzjty5swZufvuu+M8d2xsrLl51lapa9eumZs/2Ntxur2IMEtCUVLjEKqIgwtxcCEOtxALF+KQvDj4O14BmzRpwqS0ZsmTPrbX6X3+/Pm91mfKlEly587tVaZEiRJxtmGviy9pGj58uAwePDjO8sWLF0vWrFnFn7RZ0YmRD0hIso/faRxCHXFwIQ4uxOEWYuFCHJIWh5iYGEkXSVNaGjBggPTu3durpkk7kGvfKO1w7g+a/eqL3rhxY6k6bLmkV9tfb+COQ3h4uKRXnucDcSAOxOEWYuFCHJIXB7ulKOSTpoIFC5r7U6dOmdFzNn1cpUoVd5nTp097/d3169fNiDr77/Ve/8aT/dgu4ysiIsLcfOkL5O+TVbcXeyODpFeaMGotmt4nFIefR7SQ9CIlzrFgRBxciMMtxMKFOCQtDv6OVcDO06RNaprULFu2zCtj1L5KtWvXNo/1/uzZs2ZUnG358uVy8+ZN0/fJLqMj6jzbNTVLLV26dLxNcwAAAAGXNOl8SjqSTW9252/9/9GjR828TT179pS33npLvv76a9m9e7e0b9/ejIhr1aqVKV+2bFl55JFHpHPnzrJ582ZZt26ddO/e3XQS13LqmWeeMZ3Adf4mnZpg5syZMmbMGK/mNwAAgIBuntu6davUr1/f/dhOZDp06CBTpkyRvn37mrmcdGoArVGqU6eOmWJAJ6m06ZQCmig1bNjQjJpr06aNmdvJc8SdduDu1q2bVK9eXfLmzWsmzGS6AQAAEDRJU7169cx8TAnR2qYhQ4aYW0J0pNz06dNv+zyVKlWSNWvW3NG+AgCA9C1g+zQBAAAEEpImAAAAB0iaAAAAHCBpAgAACObJLQFb8f7zEy2TnibABACkDWqaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgMuoICRwqRUAQEqjpgkAAMABkiYAAAAHSJoAAAAcoE8T0g36PQEA7gQ1TQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOMHoO8MAIOwBAQqhpAgAAcICaJiCJqI0CgPSJmiYAAAAHSJoAAAAcIGkCAABwgKQJAADAATqCAymAzuIAEHpImoAASKwiwiwZ+YBIhehFEnsjg3s5iRUABA6SJiCAUWMFAIGDPk0AAAAOUNMEBDlqowAgdaSrpGns2LHy7rvvysmTJ6Vy5cry0UcfyQMPPJDWuwWkOBIrALhz6SZpmjlzpvTu3VvGjx8vNWvWlA8++ECaNm0qBw4ckPz586f17gFBkVj5CwkagGCUbpKm999/Xzp37izPP/+8eazJ0/z582XSpEnSv3//tN49IF1JKEHzHEV4YNijqb5fACDpvSP41atXZdu2bdKoUSP3sowZM5rHGzZsSNN9AwAAwSFd1DT9/vvvcuPGDSlQoIDXcn38/fffxykfGxtrbrZz586Z+z///FOuXbvml33S7cTExMgff/whma5fkvQq001LYmJuSqZrGeXGzVvzE6U3xCFuHEr9c1ai5TcNaCihyPPzITw8XNIzYuFCHJIXhwsXLph7y7LEH9JF0pRUw4cPl8GDB8dZXqJEiTTZn1D3TFrvQIAgDkmPQ95RKbgjAELGhQsXJGfOnHe8nXSRNOXNm1fCwsLk1KlTXsv1ccGCBeOUHzBggOk0brt586apZcqTJ49kyOCfWoDz589LVFSUHDt2THLkyCHpFXFwIQ4uxMGFONxCLFyIQ/LioDVMmjAVLlxY/CFdJE2ZM2eW6tWry7Jly6RVq1buREgfd+/ePU75iIgIc/OUK1euFNk3fdHT8xvARhxciIMLcXAhDrcQCxfikPQ4+KOGKV0lTUprjjp06CA1atQwczPplAOXLl1yj6YDAAC4nXSTND355JPy22+/yaBBg8zkllWqVJGFCxfG6RwOAACQrpMmpU1x8TXHpQVt/nvzzTfjNAOmN8TBhTi4EAcX4nALsXAhDoERhwyWv8bhAQAAhLB0MbklAADAnSJpAgAAcICkCQAAwAGSJgAAAAdImtLI2LFjpXjx4pIlSxapWbOmbN68WYL5sjP333+/3HXXXZI/f34zgeiBAwe8yly5ckW6detmZlXPnj27tGnTJs4M7UePHpUWLVpI1qxZzXb69Okj169f9yqzcuVKqVatmhk5UapUKZkyZYoEqhEjRpgZ5Hv27Jnu4vDrr79K27ZtzXFGRkZKxYoVZevWre71Ov5Ep/8oVKiQWa8Xzz548KDXNnQW/meffdZMYKeTy3bs2FEuXrzoVWbXrl3y0EMPmfeRzhI8cuRICRR6vcs33njDXH5Jj7FkyZIydOhQr2tghWIcVq9eLY899piZgVnP/7lz53qtT81jnj17tpQpU8aU0XNwwYIFEghx0Oun9evXz+xTtmzZTJn27dvL8ePH01UcfHXp0sWU0XkUAzYOOnoOqWvGjBlW5syZrUmTJll79+61OnfubOXKlcs6deqUFYyaNm1qTZ482dqzZ4+1Y8cOq3nz5lbRokWtixcvust06dLFioqKspYtW2Zt3brVqlWrlvXXv/7Vvf769etWhQoVrEaNGlnbt2+3FixYYOXNm9caMGCAu8yhQ4esrFmzWr1797b27dtnffTRR1ZYWJi1cOFCK9Bs3rzZKl68uFWpUiXrlVdeSVdx+PPPP61ixYpZzz33nLVp0yazv4sWLbJ+/PFHd5kRI0ZYOXPmtObOnWvt3LnT+tvf/maVKFHCunz5srvMI488YlWuXNnauHGjtWbNGqtUqVLW008/7V5/7tw5q0CBAtazzz5rzr3//Oc/VmRkpPXpp59agWDYsGFWnjx5rHnz5lmHDx+2Zs+ebWXPnt0aM2ZMSMdBz9nXX3/d+vLLLzU7tObMmeO1PrWOed26deZ9MXLkSPM+GThwoBUeHm7t3r07zeNw9uxZ8x6fOXOm9f3331sbNmywHnjgAat69epe2wj1OHjS9XqshQsXtkaPHh2wcSBpSgP65ujWrZv78Y0bN8yJMnz4cCsUnD592rw5Vq1a5f6A0JNTvzRs+/fvN2X0w8J+Y2XMmNE6efKku8wnn3xi5ciRw4qNjTWP+/bta5UvX97ruZ588kmTtAWSCxcuWPfee6+1ZMkS6+GHH3YnTeklDv369bPq1KmT4PqbN29aBQsWtN599133Mo1NRESE+bBT+qGmcdmyZYu7zLfffmtlyJDB+vXXX83jcePGWXfffbc7LvZzly5d2goELVq0sF544QWvZa1btzYf7OklDr5fkql5zH//+9/Na+CpZs2a1j/+8Q8rtd0uWfD8oaXljhw5ku7i8Msvv1j33HOPSXj0B5dn0hRocaB5LpVdvXpVtm3bZqqkbRkzZjSPN2zYIKHg3Llz5j537tzmXo9Xq6M9j1mrSIsWLeo+Zr3X6lLPGdqbNm1qLs64d+9edxnPbdhlAi1u2vymzWu++5pe4vD111+byxU98cQTpnmxatWq8tlnn7nXHz582MzK73kMem0obab2jINWw+t2bFpe3yubNm1yl6lbt665tqRnHLRp+MyZM5LW/vrXv5rrW/7www/m8c6dO2Xt2rXSrFmzdBUHT6l5zIH+Ponvc1ObpuzrnKaXONy8eVPatWtnuiGUL18+zvpAiwNJUyr7/fffTV8H38u36GP9MAl2+gbQPjwPPvigVKhQwSzT49KT2feix57HrPfxxcRed7symlBcvnxZAsGMGTPku+++M/28fKWXOBw6dEg++eQTuffee2XRokXStWtX6dGjh0ydOtXrOG73HtB7Tbg8ZcqUySTiSYlVWurfv7889dRTJjEODw83yaO+N7RvRnqKg6fUPOaEygRaTOy+jtrH6emnn3ZfhDa9xOGdd94xx6WfEfEJtDikq8uoIHVqWfbs2WN+Uac3x44dk1deeUWWLFliOhqmV5o466/Ct99+2zzWZEHPifHjx5uLZqcXs2bNkmnTpsn06dPNL+gdO3aYpEk7xKanOOD2tPb573//u+kgrz820pNt27bJmDFjzA9NrWULBtQ0pbK8efNKWFhYnBFT+rhgwYISzPS6fvPmzZMVK1ZIkSJF3Mv1uLRZ8uzZswkes97HFxN73e3K6C8zHYUTCB8Ap0+fNqPa9JeQ3latWiUffvih+b/+qkkPcdBRUeXKlfNaVrZsWTMq0PM4bvce0HuNpScdQaijaJISq7SkzQ12bZM2uWoTRK9evdy1kOklDp5S85gTKhNIMbETpiNHjpgfW3YtU3qJw5o1a8wxahcF+zNTY/Hqq6+a0eWBGAeSplSmzTPVq1c3fR08f5nr49q1a0sw0l9ImjDNmTNHli9fboZYe9Lj1eYJz2PWtmb9ErWPWe93797t9eawP0TsL2At47kNu0ygxK1hw4bmGLRGwb5pjYs2x9j/Tw9x0KZZ3ykntF9PsWLFzP/1/NAPKs9j0KZF7Z/gGQdNLjURtem5pe8V7f9il9HhzPrF4xmH0qVLy9133y1pLSYmxvS78KQ/mPQY0lMcPKXmMQf6+8ROmHS6haVLl5rpOTylhzi0a9fOTBXg+ZmpNbH6g0Ob9gMyDknqNg6/TTmgo0WmTJliRga8+OKLZsoBzxFTwaRr165mCPHKlSutEydOuG8xMTFeQ+11GoLly5ebofa1a9c2N9+h9k2aNDHTFujw+Xz58sU71L5Pnz5m1NnYsWMDaqh9fDxHz6WXOOgooEyZMpkh9wcPHrSmTZtm9vff//6317BzPee/+uora9euXVbLli3jHXZetWpVM23B2rVrzYhEz2HGOupKhxm3a9fOjLrR95U+T6BMOdChQwczIsieckCHVOv0ETr6MZTjoKNHdboMvelXzPvvv2/+b48KS61j1iHmeh6+99575n3y5ptvpupQ+9vF4erVq2aqhSJFipj3uefnpucIsFCPQ3x8R88FWhxImtKIzq2jX546X5NOQaDzTwQrfSPEd9O5m2z6gfjSSy+ZYaF6Mj/++OPmA8LTzz//bDVr1szMr6FfLq+++qp17do1rzIrVqywqlSpYuL2l7/8xes5giFpSi9x+Oabb0zypz8OypQpY02YMMFrvQ49f+ONN8wHnZZp2LChdeDAAa8yf/zxh/lg1LmNdMqF559/3nwAe9J5fnR6A92GJij6hRwozp8/b157fZ9nyZLFvE46X43nl2IoxkHPzfg+DzSJTO1jnjVrlnXfffeZ94lO0zF//nwrEOKgSXRCn5v6d+klDk6TpkCKQwb9506q1wAAANID+jQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQDg4eeffzYXD9VLOqQE3fbcuXNTZNsAUhZJE4CA8txzz0mrVq3S7PmjoqLkxIkTUqFCBfN45cqVJtHxvdAygPQnU1rvAAAEEr2obiBcAR5A4KGmCUDQWLVqlTzwwAMSEREhhQoVkv79+8v169fd6+vVqyc9evSQvn37Su7cuU3yEx0d7bWN77//XurUqSNZsmSRcuXKmSvMezaZeTbP6f/r169vluvV0nW51oSp4sWLywcffOC17SpVqng9n17Bvm7duu7n0quqAwhe1DQBCAq//vqrNG/e3CQtX3zxhUl+OnfubBISz0Rl6tSp0rt3b9m0aZNs2LDBlH/wwQelcePGcuPGDdP0V7RoUbP+woUL8uqrr962qe5///uftGnTRg4cOCA5cuSQyMhIR/t78+ZNad26tRQoUMA817lz56Rnz55+iQWAtEHSBCAojBs3ziQxH3/8sanxKVOmjBw/flz69esngwYNkowZXRXnlSpVkjfffNP8/9577zXlly1bZpImren56aefTD8luwlu2LBhZl1CTXVaY6Xy588vuXLlcry/WoOlid2iRYukcOHCZtnbb78tzZo1u+NYAEgbNM8BCAr79++X2rVrm4TJpjVIFy9elF9++cW9TJMmT9qMd/r0afN/rS3SxMuzz5I296XU/upz2QmT0v0HELxImgCElPDwcK/HmmRpU5m/ac2WZVley65du+b35wEQOEiaAASFsmXLmj5KnonKunXr5K677pIiRYo42kbp0qXl2LFjcurUKfeyLVu23PZvMmfObO61P5SnfPnymakJbOfPn5fDhw977a8+l2eZjRs3OtpPAIGJpAlAwNFO0zp6zfP24osvmiTk5ZdfNn2FvvrqK9N3STt92/2ZEqN9l0qWLCkdOnSQXbt2maRr4MCBZp1ns5+nYsWKmXXz5s2T3377zTQHqgYNGsi//vUvWbNmjezevdtsU/tA2Ro1aiT33XefWb5z505T7vXXX/dLfACkDZImAAFHO2pXrVrV6zZ06FBZsGCBbN68WSpXrixdunSRjh07upMeJzSp0akFNPG5//77pVOnTu5ERkfhxeeee+6RwYMHm+kNdCRc9+7dzfIBAwbIww8/LI8++qi0aNHCjMrThMymidycOXPk8uXLpt+UPpd2OgcQvDJYvo3yAJCOaG2Tztv0448/eiU9AOCLpAlAuqK1P9mzZzfTEWii9Morr5iJK9euXZvWuwYgwDFPE4B0RSe01Lmdjh49Knnz5jV9j0aNGpXWuwUgCFDTBAAA4AAdwQEAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAAZImAAAAB0iaAAAAJHH/D4JDW4LgRWJ/AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>palabra</th>\n",
" <th>conteo</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>the</td>\n",
" <td>336749</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>and</td>\n",
" <td>164140</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>a</td>\n",
" <td>163123</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>of</td>\n",
" <td>145864</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>to</td>\n",
" <td>135724</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>is</td>\n",
" <td>107332</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>br</td>\n",
" <td>101871</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>it</td>\n",
" <td>96467</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>in</td>\n",
" <td>93976</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>i</td>\n",
" <td>87690</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>this</td>\n",
" <td>76007</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>that</td>\n",
" <td>73286</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>s</td>\n",
" <td>63602</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>was</td>\n",
" <td>48209</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>as</td>\n",
" <td>46935</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>for</td>\n",
" <td>44345</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>with</td>\n",
" <td>44130</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>movie</td>\n",
" <td>44047</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>but</td>\n",
" <td>42623</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>film</td>\n",
" <td>40159</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" palabra conteo\n",
"0 the 336749\n",
"1 and 164140\n",
"2 a 163123\n",
"3 of 145864\n",
"4 to 135724\n",
"5 is 107332\n",
"6 br 101871\n",
"7 it 96467\n",
"8 in 93976\n",
"9 i 87690\n",
"10 this 76007\n",
"11 that 73286\n",
"12 s 63602\n",
"13 was 48209\n",
"14 as 46935\n",
"15 for 44345\n",
"16 with 44130\n",
"17 movie 44047\n",
"18 but 42623\n",
"19 film 40159"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ---------------------------------------------\n",
"# CELDA 1: IMPORTACIONES Y CARGA DE DATOS (EDA)\n",
"# ---------------------------------------------\n",
"\n",
"# 1) Librerías de datos y visualización\n",
"from datasets import load_dataset\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from collections import Counter\n",
"import re\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\") # Ocultar warnings no críticos\n",
"\n",
"# 2) Carga del dataset IMDb\n",
"ds = load_dataset(\"imdb\") # Descarga y cachea automáticamente\n",
"train = ds[\"train\"].to_pandas() # Partición de entrenamiento\n",
"test = ds[\"test\"].to_pandas() # Partición de prueba\n",
"\n",
"# 3) Vistazo rápido a los datos\n",
"print(f\"Train set: {train.shape[0]} ejemplos\")\n",
"print(f\"Test set: {test.shape[0]} ejemplos\\n\")\n",
"display(train.head())\n",
"\n",
"# 4) Distribución de clases\n",
"train[\"label\"].value_counts().plot.bar()\n",
"plt.title(\"Distribución de etiquetas (0=negativo, 1=positivo)\")\n",
"plt.xlabel(\"Etiqueta\")\n",
"plt.ylabel(\"Conteo\")\n",
"plt.show()\n",
"\n",
"# 5) Análisis de longitud de reseñas\n",
"train[\"length\"] = train[\"text\"].str.len()\n",
"display(train[\"length\"].describe()) # Media, percentiles, etc.\n",
"train[\"length\"].hist(bins=50)\n",
"plt.title(\"Longitud de reseñas (nº caracteres)\")\n",
"plt.xlabel(\"Longitud\")\n",
"plt.ylabel(\"Frecuencia\")\n",
"plt.show()\n",
"\n",
"# 6) Top 20 palabras más frecuentes\n",
"all_words = Counter()\n",
"for t in train[\"text\"]:\n",
" tokens = re.findall(r\"\\w+\", t.lower()) # Solo palabras\n",
" all_words.update(tokens)\n",
"most_common = all_words.most_common(20)\n",
"display(pd.DataFrame(most_common, columns=[\"palabra\",\"conteo\"]))\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a6b2c3ea-1bce-4c70-a41e-5ea2ab43e641",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tokenizer cargado: BertTokenizerFast\n",
"Batches de entrenamiento: 1563\n",
"Batches de validación: 1563\n",
"\n",
"Tamaños del batch de entrenamiento:\n",
" input_ids torch.Size([16, 128])\n",
" attention_mask torch.Size([16, 128])\n",
" labels torch.Size([16])\n"
]
}
],
"source": [
"# -------------------------------------------------------------\n",
"# CELDA 2: TOKENIZACIÓN Y CREACIÓN DE DATASETS & DATALOADERS\n",
"# -------------------------------------------------------------\n",
"\n",
"# 1) Importaciones necesarias\n",
"from transformers import AutoTokenizer\n",
"import torch\n",
"from torch.utils.data import Dataset, DataLoader\n",
"\n",
"# 2) Cargar tokenizer BERT\n",
"# - \"bert-base-uncased\" es un modelo preentrenado en inglés\n",
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
"print(\"Tokenizer cargado:\", tokenizer.__class__.__name__)\n",
"\n",
"# 3) Definir clase Dataset para IMDb\n",
"class IMDbDataset(Dataset):\n",
" def __init__(self, texts, labels, tokenizer, max_len=128):\n",
" self.texts = texts\n",
" self.labels = labels\n",
" self.tokenizer = tokenizer\n",
" self.max_len = max_len\n",
"\n",
" def __len__(self):\n",
" return len(self.texts)\n",
"\n",
" def __getitem__(self, idx):\n",
" text = str(self.texts[idx])\n",
" label = int(self.labels[idx])\n",
" # Tokenización y padding/truncation\n",
" enc = self.tokenizer(\n",
" text,\n",
" add_special_tokens=True, # Añade [CLS] y [SEP]\n",
" max_length=self.max_len, # Longitud fija\n",
" truncation=True, # Trunca si es muy largo\n",
" padding=\"max_length\", # Rellena si es muy corto\n",
" return_attention_mask=True, # Máscara de atención\n",
" return_tensors=\"pt\" # Tensores PyTorch\n",
" )\n",
" return {\n",
" \"input_ids\": enc[\"input_ids\"].squeeze(), # Tensor [max_len]\n",
" \"attention_mask\": enc[\"attention_mask\"].squeeze(), # Tensor [max_len]\n",
" \"labels\": torch.tensor(label, dtype=torch.long)\n",
" }\n",
"\n",
"# 4) Instanciar los datasets de entrenamiento y prueba\n",
"train_dataset = IMDbDataset(\n",
" texts=train[\"text\"].tolist(),\n",
" labels=train[\"label\"].tolist(),\n",
" tokenizer=tokenizer,\n",
" max_len=128\n",
")\n",
"test_dataset = IMDbDataset(\n",
" texts=test[\"text\"].tolist(),\n",
" labels=test[\"label\"].tolist(),\n",
" tokenizer=tokenizer,\n",
" max_len=128\n",
")\n",
"\n",
"# 5) Crear DataLoaders para batching\n",
"train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)\n",
"test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)\n",
"\n",
"# 6) Verificar número de batches y un batch de ejemplo\n",
"print(f\"Batches de entrenamiento: {len(train_loader)}\")\n",
"print(f\"Batches de validación: {len(test_loader)}\\n\")\n",
"\n",
"# Obtener y mostrar dimensiones de un batch\n",
"batch = next(iter(train_loader))\n",
"print(\"Tamaños del batch de entrenamiento:\")\n",
"print(\" input_ids \", batch[\"input_ids\"].shape)\n",
"print(\" attention_mask\", batch[\"attention_mask\"].shape)\n",
"print(\" labels \", batch[\"labels\"].shape)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "377d78c7-1ee2-4059-bf7f-f441c837426e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"✔ TrainingArguments configurados\n",
"✔ Trainer instanciado\n",
"\n",
"→ Entrenamiento en curso… puede tardar varios minutos:\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='4689' max='4689' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [4689/4689 16:50:50, Epoch 3/3]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>100</td>\n",
" <td>0.516200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>200</td>\n",
" <td>0.412300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>300</td>\n",
" <td>0.410600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>400</td>\n",
" <td>0.361900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>500</td>\n",
" <td>0.372400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>600</td>\n",
" <td>0.358200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>700</td>\n",
" <td>0.351000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>800</td>\n",
" <td>0.351700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>900</td>\n",
" <td>0.319700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1000</td>\n",
" <td>0.345700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1100</td>\n",
" <td>0.315200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1200</td>\n",
" <td>0.331200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1300</td>\n",
" <td>0.309800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1400</td>\n",
" <td>0.305700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1500</td>\n",
" <td>0.299400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1600</td>\n",
" <td>0.294500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1700</td>\n",
" <td>0.207200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1800</td>\n",
" <td>0.191500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1900</td>\n",
" <td>0.226800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2000</td>\n",
" <td>0.163900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2100</td>\n",
" <td>0.186600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2200</td>\n",
" <td>0.217100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2300</td>\n",
" <td>0.179600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2400</td>\n",
" <td>0.187800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2500</td>\n",
" <td>0.167500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2600</td>\n",
" <td>0.204400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2700</td>\n",
" <td>0.182700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2800</td>\n",
" <td>0.195400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2900</td>\n",
" <td>0.183800</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3000</td>\n",
" <td>0.184700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3100</td>\n",
" <td>0.181700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3200</td>\n",
" <td>0.110600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3300</td>\n",
" <td>0.071500</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3400</td>\n",
" <td>0.098600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3500</td>\n",
" <td>0.084200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3600</td>\n",
" <td>0.085900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3700</td>\n",
" <td>0.083100</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3800</td>\n",
" <td>0.085900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3900</td>\n",
" <td>0.097200</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4000</td>\n",
" <td>0.077700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4100</td>\n",
" <td>0.089600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4200</td>\n",
" <td>0.096600</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4300</td>\n",
" <td>0.073400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4400</td>\n",
" <td>0.086300</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4500</td>\n",
" <td>0.060700</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4600</td>\n",
" <td>0.059000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='1563' max='1563' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [1563/1563 2:00:59]\n",
" </div>\n",
" "
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"✔ Evaluación final en test:\n",
" eval_loss: 0.5139\n",
" eval_accuracy: 0.8884\n",
" eval_f1: 0.8883\n",
" eval_runtime: 7263.0685\n",
" eval_samples_per_second: 3.4420\n",
" eval_steps_per_second: 0.2150\n",
" epoch: 3.0000\n",
"\n",
"✔ Modelo y tokenizer guardados en 'sentiment-bert-model/'\n"
]
}
],
"source": [
"# -------------------------------------------------------------\n",
"# CELDA 3: DEFINICIÓN, ENTRENAMIENTO, EVALUACIÓN Y GUARDADO\n",
"# -------------------------------------------------------------\n",
"\n",
"# 1) Importaciones para el entrenamiento\n",
"from transformers import (\n",
" AutoModelForSequenceClassification,\n",
" TrainingArguments,\n",
" Trainer\n",
")\n",
"import numpy as np\n",
"from sklearn.metrics import accuracy_score, f1_score\n",
"\n",
"# 2) Carga del modelo BERT para clasificación binaria\n",
"# num_labels=2 porque tenemos dos clases: positiva y negativa\n",
"model = AutoModelForSequenceClassification.from_pretrained(\n",
" \"bert-base-uncased\",\n",
" num_labels=2\n",
")\n",
"\n",
"# 3) Definición de la función de métricas\n",
"def compute_metrics(eval_pred):\n",
" logits, labels = eval_pred\n",
" preds = np.argmax(logits, axis=1)\n",
" return {\n",
" \"accuracy\": accuracy_score(labels, preds),\n",
" \"f1\": f1_score(labels, preds)\n",
" }\n",
"\n",
"# 4) Configuración de los argumentos de entrenamiento\n",
"# Adaptado a transformers 4.51.3 con do_train y do_eval\n",
"training_args = TrainingArguments(\n",
" output_dir=\"./results\", # Carpeta donde guardar checkpoints\n",
" num_train_epochs=3, # Número de pasadas sobre el dataset\n",
" per_device_train_batch_size=16, # Tamaño de batch en entrenamiento\n",
" per_device_eval_batch_size=16, # Tamaño de batch en evaluación\n",
" do_train=True, # Ejecutar fase de entrenamiento\n",
" do_eval=True, # Ejecutar evaluación al final\n",
" logging_dir=\"./logs\", # Carpeta de logs para TensorBoard\n",
" logging_steps=100 # Cada cuántos pasos registrar métricas\n",
")\n",
"\n",
"print(\"✔ TrainingArguments configurados\")\n",
"\n",
"# 5) Creación del Trainer\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=train_dataset, # Viene de la celda 2\n",
" eval_dataset=test_dataset, # Viene de la celda 2\n",
" compute_metrics=compute_metrics\n",
")\n",
"\n",
"print(\"✔ Trainer instanciado\")\n",
"\n",
"# 6) Lanzar el entrenamiento\n",
"print(\"\\n→ Entrenamiento en curso… puede tardar varios minutos:\")\n",
"trainer.train()\n",
"\n",
"# 7) Evaluación final en test set\n",
"metrics = trainer.evaluate()\n",
"print(\"\\n✔ Evaluación final en test:\")\n",
"for name, value in metrics.items():\n",
" print(f\" {name}: {value:.4f}\")\n",
"\n",
"# 8) Guardar modelo y tokenizer para despliegue\n",
"trainer.save_model(\"sentiment-bert-model\") # Pesos y config\n",
"tokenizer.save_pretrained(\"sentiment-bert-model\") # Archivos del tokenizer\n",
"print(\"\\n✔ Modelo y tokenizer guardados en 'sentiment-bert-model/'\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "0db4d022-aa06-40e2-b4b8-ab6b1e226a16",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: huggingface_hub in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (0.31.1)\n",
"Collecting huggingface_hub\n",
" Using cached huggingface_hub-0.32.0-py3-none-any.whl.metadata (14 kB)\n",
"Requirement already satisfied: filelock in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (3.18.0)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (2025.3.0)\n",
"Requirement already satisfied: packaging>=20.9 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (25.0)\n",
"Requirement already satisfied: pyyaml>=5.1 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (6.0.2)\n",
"Requirement already satisfied: requests in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (2.32.3)\n",
"Requirement already satisfied: tqdm>=4.42.1 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (4.67.1)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (4.13.2)\n",
"Requirement already satisfied: colorama in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from tqdm>=4.42.1->huggingface_hub) (0.4.6)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (3.4.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (3.10)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (2.4.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (2025.4.26)\n",
"Using cached huggingface_hub-0.32.0-py3-none-any.whl (509 kB)\n",
"Installing collected packages: huggingface_hub\n",
" Attempting uninstall: huggingface_hub\n",
" Found existing installation: huggingface-hub 0.31.1\n",
" Uninstalling huggingface-hub-0.31.1:\n",
" Successfully uninstalled huggingface-hub-0.31.1\n",
"Successfully installed huggingface_hub-0.32.0\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install --upgrade huggingface_hub"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "031f4c70-5a75-4d89-9905-bbf8016b7b68",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from huggingface_hub import HfApi, login, create_repo\n",
"\n",
"# --- CONFIGURACIÓN CRUCIAL ---\n",
"HF_USERNAME = \"Light-Dav\" # ¡Tu nombre de usuario correcto!\n",
"HF_TOKEN = \"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\" # ¡Tu token de Hugging Face!\n",
"\n",
"REPO_NAME = \"sentiment-analysis-full-project\" # <--- ¡Confirma que este es el nombre EXACTO del repo en HF Hub!\n",
"REPO_ID = f\"{HF_USERNAME}/{REPO_NAME}\"\n",
"\n",
"# --- AJUSTE DE LA RUTA DEL PROYECTO ---\n",
"# Esto asegurará que siempre suba la raíz de tu proyecto, sin importar dónde esté el notebook.\n",
"# Asumimos que tu carpeta principal es 'sentiment-analysis-bert'\n",
"# y que tu notebook está dentro de ella o en una subcarpeta (como 'notebooks').\n",
"# Puedes ajustar esta ruta si tu proyecto no está en C:\\Users\\Light\\Documents\\sentiment-analysis-bert\n",
"PROJECT_ROOT_DIR = \"C:\\\\Users\\\\Light\\\\Documents\\\\sentiment-analysis-bert\"\n",
"\n",
"\n",
"print(f\"La ruta del proyecto a subir es: {PROJECT_ROOT_DIR}\")\n",
"print(f\"El repositorio de destino será: {REPO_ID}\")\n",
"\n",
"# --- EJECUCIÓN ---\n",
"try:\n",
" print(\"\\n--- Paso 1: Iniciando sesión en Hugging Face Hub ---\")\n",
" login(token=HF_TOKEN)\n",
" print(\"Inicio de sesión exitoso en Hugging Face Hub.\")\n",
"\n",
" api = HfApi()\n",
"\n",
" print(f\"\\n--- Paso 2: Creando/Verificando el repositorio '{REPO_ID}' en Hugging Face Hub ---\")\n",
" create_repo(repo_id=REPO_ID, private=False, exist_ok=True, token=HF_TOKEN)\n",
" print(f\"Repositorio '{REPO_ID}' creado o ya existe en Hugging Face Hub.\")\n",
"\n",
" print(f\"\\n--- Paso 3: Subiendo el contenido de '{PROJECT_ROOT_DIR}' a '{REPO_ID}' ---\")\n",
" api.upload_folder(\n",
" folder_path=PROJECT_ROOT_DIR,\n",
" repo_id=REPO_ID,\n",
" repo_type=\"model\",\n",
" commit_message=\"Initial upload of full sentiment analysis project (code, notebooks, data)\",\n",
" # Ahora 'git_exclude' debería funcionar después de la actualización.\n",
" git_exclude=[\n",
" \"venv/\", # Excluye el entorno virtual\n",
" \"**/__pycache__/\", # Excluye archivos de caché de Python\n",
" \"*.ipynb_checkpoints/\", # Excluye checkpoints de Jupyter si están en la raíz\n",
" \"notebooks/.ipynb_checkpoints/\", # Excluye checkpoints específicos de notebooks\n",
" # Puedes añadir más exclusiones aquí, ej: \"data/raw_large_files/\"\n",
" # También podrías querer excluir tu modelo ya subido si ya está en otro repo:\n",
" # \"sentiment-bert-model/\"\n",
" ],\n",
" multi_commits=True # Útil para uploads grandes\n",
" )\n",
"\n",
" print(\"\\n¡Carga de todo el proyecto completada con éxito!\")\n",
" print(f\"Tu proyecto está ahora disponible en: https://huggingface.co/{REPO_ID}\")\n",
"\n",
"except Exception as e:\n",
" print(f\"\\nERROR al subir el proyecto a Hugging Face Hub: {e}\")\n",
" print(\"Verifica los siguientes puntos:\")\n",
" print(f\"- Tu nombre de usuario: '{HF_USERNAME}' y tu token son correctos y tienen permisos de escritura.\")\n",
" print(f\"- El nombre del repositorio: '{REPO_NAME}' es el que deseas.\")\n",
" print(f\"- La ruta local del proyecto: '{PROJECT_ROOT_DIR}' es la correcta y contiene todos tus archivos.\")\n",
" print(\"- Tienes conexión a internet.\")\n",
" print(\"- ¡MUY IMPORTANTE: Asegúrate de haber reiniciado el kernel de Jupyter después de actualizar la librería!\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|