File size: 79,078 Bytes
909b013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "ff355c0e-c42c-4e5e-a2bf-f860afb7a1e4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train set: 25000 ejemplos\n",
      "Test  set: 25000 ejemplos\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>text</th>\n",
       "      <th>label</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>I rented I AM CURIOUS-YELLOW from my video sto...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>\"I Am Curious: Yellow\" is a risible and preten...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>If only to avoid making this type of film in t...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>This film was probably inspired by Godard's Ma...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Oh, brother...after hearing about this ridicul...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                text  label\n",
       "0  I rented I AM CURIOUS-YELLOW from my video sto...      0\n",
       "1  \"I Am Curious: Yellow\" is a risible and preten...      0\n",
       "2  If only to avoid making this type of film in t...      0\n",
       "3  This film was probably inspired by Godard's Ma...      0\n",
       "4  Oh, brother...after hearing about this ridicul...      0"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHCCAYAAADy9P3IAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPmxJREFUeJzt3Q28jHX+//HP4bgv97nbFJsKsYQNJSVCVJTalKKitqJ1U2uzSnSnFKEbttrudilpo6JEVFrkNpFQW4q2RbtuziL383+8v7+95n/NmMP3nA5n5szr+XiM48x8z8w11928r+/dZEQikYgBAADgsAod/mEAAAAIoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQkAAMADoQnwtGfPHnvooYfsvffey+9FAQDkA0ITDjF06FDLyMg4Jq91/vnnu1vgww8/dK/9+uuv27Gm19V7z86AAQNswoQJ1rRp02OyPNdff73VqFHDkkn89kp3r732mpUvX9527NiR34uSMpJxv07nc/iLL77oyn777bdHbXmaNWtmAwcOtIKA0FTABQdEcCtevLhVq1bN2rVrZ2PHjrX//ve/efI6P/zwgztQly9fbgX1w3Hq1Kn27rvvWtmyZa0g++KLL9y2PJon0byimj9tl/xw4MABu/fee+3222+34447Luax+fPnW4sWLaxkyZJWpUoV+93vfpdWwSpVzgfaJtqG7du3d+FX50idMwui/DxW/vCHP9hTTz1lGzdutJSn755DwfXCCy/ouwUj9913X+Qvf/lL5Pnnn4889NBDkbZt20YyMjIiJ598cuSzzz6L+Zt9+/ZFfvrppxy9zuLFi93r6PVyYs+ePe4W+OCDD9zzTJ48OXKs6T3rvcc7ePBgZOTIkYesp6OtR48ebvsca1r32gbaFkfaXvmtVKlSbj3lhylTprhj6Pvvv4+5/9NPP40UL148cuaZZ0bGjRsXGTx4cKRYsWKR9u3bR9LF4c4He/fujezevTuSDNatW+eW86STToqcf/75uTqHJaNE5/DsjpX9+/e7sjrPHS0HDhyIVKlSJXLPPfdEUl1mfoc2HBsXXXSRNWnSJPr7oEGDbM6cOXbxxRfbpZdeaqtXr7YSJUq4xzIzM93taNq1a5e7Ci9atKglC9XCJaKrTzXNwZJqe+W3F154wc455xz7xS9+EXP/H//4RytXrpxrai5durS7T81RN910k82cOdPatm1r6axIkSKWLKpWrWr/+te/XG3gkiVL7Ne//rUVBDk5hxcuXNjdjqZChQrZFVdcYS+//LINGzbsmHX/OBponktjF1xwgd1zzz323Xff2V//+tfDtofPmjXLNTeoaUpNEaeffrr7cBB9OAQnmxtuuCHaFBhUc6sPTL169Wzp0qXWsmVLF5aCv82uj4yaPlRGJ7NSpUq5YLdhw4aYMvogUv+IeImec/fu3e59nXbaaS4c6WR5+eWX29dff33YPk2ffvqpC5z68NP7bt26tX3yyScJm0DnzZvnwtUJJ5zglvmyyy6zH3/80Xyo2lzrSMumn1OmTElY7uDBgzZ69Gg744wzXNnKlSvbb3/7W9u6davX66xZs8advNQUob9XkH7rrbdi3suVV17p/t+qVavottQ2zm7dfv/999a5c2f3nitVqmT9+/d3neXDf5fT7aVO92o2qVWrlhUrVsyqV6/u+kTo/oCef+fOnfbSSy9FlzN4fu3Tt912m9tPdTFQoUIF977imxz37dvnTuKnnnqqWx8qp/1c+/vhaH+aMWOGtWnTJub+rKws97fXXnttNDBJ9+7d3f6jZt6fS+9Rz/XPf/7TrXf9X/vcnXfe6Y6b3OwvKqd9X033Oj617dVMG7/NtmzZ4l6nfv367nX1HnV8fPbZZ9EyRzofhPs0af1rX1S5eFqXWma9XmDz5s3Ws2dP9z70WIMGDdz2zy3tWzrHHE1673369HH9IbU/arkbN25sc+fOPaSsz/nGZ5+NP4cf7liJ79OkC+lf/vKXCd9L8+bNYy6+9+/fb/fff7+dcsopbl1qu+q8HT5OAxdeeKE7LpO9yfZIqGlKc9ddd53byXUFrCvhRFatWuUOpF/96ld23333uYPjH//4hwsJUqdOHXf/kCFD7Oabb7Zzzz3X3X/22WdHn+M///mPOxl07drVfaDopHc4Dz74oDuQ1RauE6VO/PqA0gEX1Ij50geJln/27Nnu9fv27ev6cukk8/nnn7sDPrv3rfeiE5g+sHWF/Kc//cl9wH/00UeHdAhX3xbVMOjDXicgLbNOlpMmTTrs8mndd+nSxerWrWvDhw9360ofIieeeOIhZfWBp5OcHlc/mXXr1tmTTz7pTrbaHoe7itf7CWpG7rrrLhdy9CGuD96//e1vLuQp1Op51d9N+4W2rQQ/4/3000/uxL5+/Xr3d/rQ/ctf/uJqMXNLH+AKyX//+9/d/qTXXrlypT3++OP25ZdfRvtl6HV69eplZ511lisnwbZcvHix61ek7a31qO0xbtw4t+0UBhQMgg8XrfPgefRBrRqHZcuWuZN8dnQBsHfvXmvUqFHM/VpOfZCEP1iCGrqGDRu67RT+8Nu+fbvXOlGw0NV6eJ9Wv0Ttg4899pi9//77NnLkSPf+b7311hzvL6p5HjFihF1yySXueRWC9FPhMOybb75x618BtGbNmrZp0yZ3TJx33nluvWr7+5wPAnp97XdvvPGGe55wTaZeRx++2obBvqbtp3OPjiu9/uTJk92H/7Zt29xxfbT7P8Wvj0T0nsqUKRNzn84XOg9oG+j8+fTTT7t+VIsWLXIXSTk53+Rmnz3csRLvqquuciFfx1C45k2B55NPPrFHH300ep+eU0FMF2J33HGHLVy40C2bWi7iL/wUFEX73ZlnnmkpK7/bB3Fs+jSpj0F2ypQp4/pfBO699173N4HHH3/c/f7jjz/mqg/Deeed5x4bP358wsd0i+/T9Itf/CKSlZUVvf+1115z948ZMyZ6n/r7JGqjj39O9ePS344aNeqQsuF2fJXRew907tw5UrRo0cjXX38dve+HH36IHH/88ZGWLVseso7btGkT83z9+/ePFC5cOLJt27bI4TRs2DBStWrVmHIzZ850zxnu0/Txxx+7+yZMmBDz9zNmzEh4f7zWrVtH6tevH9OfRMt79tlnR0499VSvPk3x63b06NGurLZPYOfOnZFatWod8hy+20t97woVKuTeb5j2Hz3nvHnzjthPY9euXYfct2DBAvf3L7/8cvS+Bg0aRDp27BjJqeeee84918qVK2PuD9bd3LlzD/mbK6+80vXriN/XfW7qexPQ+w36KYbpGG7cuHGO95eNGzdGMjMz3f4eNnToUFcuvH6176h/SpiWTX22wstzuPNBfF+99957z5V9++23Y8p16NAh8stf/vKQfe2vf/1rTP+o5s2bR4477riY80VuHKlfZrDej3QL78sS3L9kyZLofd99953r93bZZZfl+Hzjs8/Gn8MPd6wE569gH9u+fbvbnnfccUdMuREjRrg+fFp2Wb58ufu7Xr16xZS788473f1z5sw55LX0/m699dZIKqN5Dq4a+HCj6ILRYm+++aarBcgNXV0lqoLPjq50jj/++OjvupJRk9o777yT49dWLUrFihVdTVC87NrWdSWvGiDVwoSrqrUM11xzjasF0RVemK7gws+nq0Y9j67QsqP+FKo969GjR8zVqa4YVfMUpqtqldFj//73v6M3XcFpG37wwQfZvo6aVVT785vf/MZt6+BvVaulGoWvvvrKNffklLaH1om2T0C1OMHVbG7ofaq2onbt2jHvU83Jcrj3GQjXRqpGR+9TTX3al3VFHtDvusLX+88JPZ+oZjFMtSHB/h5PTSnB46KmJdV2+twSNSHdcsstMb9rf1NNUE73F9XAqnZMzZlhiY4Xva+gxkv7ttZD0FwfXq85oe2q4zNcI6vmQ71v1XqE9zWth6uvvjp6n2pjgpGJqo05mlT747OtVOOXqFkrqGmRk046yTp16uSasbUec3K+ye0+6ytoclUt9P9lvv+j7dOsWTO37BKci+P7e6rGSaZPn37Ic+t40T6YymiegzvhqC9KdnTieu6551xVrJp11Byj/kD6oAw3GRyOmoRy0olY7fVhCiP60MvNMHj1W9JJPSed29UXSZ3V9Xfx9IGu8Kg+VuorEghOJoHgA/Vw/Y2CQBX/fiX+g0gnSTXnZLet1IyZHTVp6ASoPmy6Zff38Z2aj0TLr+0SHz4TrTdfep+q3lc/neyW80gUTtRMoM7aCoPhk3+4SUzNSPrwUl83NZOoyURN1mqK9hF+3nBYS9SnQ0074TCn/SO+T5QvBbD49aPnC+9rvvtLsA9qO8Y3CcaHQu33Y8aMcc1LauoL96FS35rc0HGp5umJEye69aZgpuY6hd1waNJy6jiJP+cETceHuzjJC7qIib+Q8ZXo+NY+p3NM0O/R93zzc/dZH1rvah5dsGCBa1bVOVRN0qNHj46W0frWtojfbxRsFewSbQ8dL6ncCVwITWlOnXh1Yo3f8cN0olenRV2Z6upBHWB11aErRF0d+Yy8yGk/JB+HqyU62qNBEsnuNeM/WHNLJ059AKpDaSLZhYzgb0WdalWzlMjh9oFjub20rOpoPGrUqITl1Sn8SFRLosDUr18/d5WvGhe9vvrHhGtL1YdLHwiqRdW+rIsD9Z0aP368u0jIThAQFFLCfc9UMxDUIMbTferzE1CfKNUA+tC2Da8jn/375+wvh5vrR6H7xhtvdB2Ag75WWs+5rYUWbRf139E8aKptUS2HahpVG5csdJ4M1xRmRxeHWi9HS2732ZxQ3zbVGGs7KDTpp7bzlf8bJBKWkxCkvmeqVUxlhKY0pw6Ckt0HaUAHjGqYdNOHmU6egwcPdkFKV8t5ffUQX/Ws4KHakvDVlK6CdRDG0xVOuIpbHR7VQVFXrr7DnfWBopPG2rVrE45A0/rw+fA+kpNPPtn9TFTVHv/aeh/q8KvO3DkNocH60Ps/Uu1GTralll+d6eOvIBOtt5xsL3VE1r52pGXJ7nHNKK8mz3BTiWp6Er1+MHpLN9W66kNJnW0P9wGkD3RRbYsCXkBX/qo5UcdcNYWGA5KaYcP3qaO6Rqn50OvkdBZt3/0l2Ad1fKlzdUBNb/G1pFqvWuY///nPh/0wzOn5QOtcgVMXYxoJpqZknV/il3PFihUunIVrm3Q8ht/H0aKO5j4j9dQpPjxqNLvjW4MadI4JwmtOzje52Wdzsk00SESDZ9TEq/O9touaf6uFQr/Wt7aF3lt4oIgGB2h/iN8eqvHVcZDdoJJUQZ+mNKYTk64WdaLs1q1btuUSXQ1rJFC4GUIHmST6UMoNzecR7melk7Wu1NXWHv5Q0GgOHYiBadOmHTI1gar+1Y6uUUO+tUC6ktd8OrqaCzcJ6oSgZgSd2MNDynNLHxRalzoZh5uN1DdCo5HC9IGrWhlts3jqk3K4da8aB43C0dV8olqQ8NQIOdmWHTp0cLM/h7/2Rs0MzzzzzCFlfbeX3qdOsM8+++whz6ErfQ2dDi9rouXU9ovftk888cQhQ/KDvkkB9c9RjVui5rUw9U9RjYLCUZhqtBRKNYVHeP/VxYk+3MJX6j+3T9OR+O4vCqcKehpdGJboeEm0XvXBGt8fLqfng2Aen7ffftutKy1fuGku2Nc0o3S475PKabtquymsJGufJjVzhZvatc/r3KJzTDBPku/5Jrf7bHbHSna0/nVsqyZLFzGJtoeEm+wkqCHu2LFjzP1q3stuFGUqoaYpTajaW1csOsnoQFRg0gGuqwHN05PdxI6iNnQ1z+kgUHn1hVCfBjVL6GAOPhDVjq0qYnXg1gGqIbLhK9ec0JWUnltXUlpeHZg6MYSnRdBVlT6s1aavDwhVWevDKn4orTqVK4Spw6KG+OqKSR+8ugpX51f1D0jkgQceiM5PpXL6YFHo0MlJw7PzivreaN3qddTsoZCqDwL1Xwh/9YY+FDSEXOVVa6GTrGqOdKWnDy71NQl3yI6nrzHQa6hmROtRtTtatzqhq5k2mGtHIU4n8UceecQFOfUxUVNsor4xeh59uGod66SoEKgPvWBIf5jv9lL/DDUHqKOzajJVU6IPf+2/ul+dZ4Mh/Qov2o46UesqWPub9jtdJWs5FGLUD0XvUeXi+93oMYVJPY/2OYUgLaOGtB+Ojhetfz2njo/46TL0waDtpQ7xWrf6IFV5vfe86NPkw3d/0fQfqkXRMmqqBy2j9gWdM1R7FK6h0HrV+9VxqfeoKRbU/Bc/r09uzgf6UNZ+ryk7tI/G10hoXer40xQD2tdU86ZtpSHsOj+EB46ojC5EfGrotP8qTCggiIKbtlnQzBsM0Pg5fZpUA6na/PCUA6L5lnJ6vsntPpvdsZIdhSKtUzXp63ygi88whX7V5uoCSetP+5vOr1rvamKNr0XVe1O/z5SebkDye/gejq5gOGlw05BPDXu+8MIL3fD9RMN044erzp49O9KpU6dItWrV3N/r59VXXx358ssvY/7uzTffjNStW9cNXw4P3dUQ3DPOOCPh8mU35cArr7wSGTRoUKRSpUqREiVKuCG2wVDXMH29iaYn0BDZc845xw3rjX/OYAi6vs6iZs2akSJFirh1cMUVV8QM742fckCWLVsWadeunRvSXLJkyUirVq0i8+fP95rWIXgviYbux/vb3/4WqVOnjnsfWodvvPFGtl+j8swzz7ih5VovGo6saQQGDhzohicfid5v9+7d3fvXetC6u/jiiyOvv/56TLlnn33WDffWlAnh95Bo3Wq7XHrppW79VKxYMdK3b9/osPb49+67vTSU/JFHHnH7jcqWK1fOvedhw4a5IdGBNWvWuOHYWhfh4fFbt26N3HDDDW55tO20DVU2ftqDBx54IHLWWWdFypYt656jdu3akQcffNC9/pFoG2kI9vr16w95TMP9NZWDhpWfcMIJkd69e//sIfEBLb+Gj/sMM/fdX/RVGvqKC+0XKnfBBRdEVq9eHalQoULklltuiZlyQEPRNUWGymkbaiqHRNswu/NBdvu1pr+oXr26K6vtksimTZui21XnIr2XRFMEdOnSxS2f9oMj0bL4TPWQW3oebX9NlaCpPbQ/a3qIROcFn/ONzz6baF/I7liJn3IgrFu3btHpVLL7upZhw4ZFz6vafjpvx39Njqap0D5z9913R1Jdhv7J7+AGoGBRnw5daaqmKNGM7wWBar901a9as0RNYKlOtQeqDVMNSHz/omSn2jPVfoYnYswvqqnr3bt3wubOdDF16lQ3dYJql4PBEqmKPk0AkAtqslBTlZo9w82oqSjRqLCgr0qqhV7NYaT3o28TQHJ45JFHXPNhqgcmoU8TAOSS+uHEd5BNRepcra9bUT8WdSzWZIqvvPKK6welPmWpRH0B4yeeRf5asGCBFRSEJgBIc5rKQx2P1eFYgSPoHK6mOQD/H32aAAAAPNCnCQAAwAOhCQAAwAN9mvKIppPX5GiaDCzVv5AQAIB0EYlE3Az+mvTzSF9CT2jKIwpMefFdZAAA4NjT19uEv4A7EUJTHgmm8NdKz4vvJAMAAEefRoyq0iP8VTzZITTlkaBJToGJ0AQAQGrx6VpDR3AAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPhCYAAAAPmT6FgMOpcdf0/F4EHEPfPtwxvxcBxxDHd3rh+D48apoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAAA8EJoAAACSPTTNnTvXLrnkEqtWrZplZGTY1KlTo4/t27fP/vCHP1j9+vWtVKlSrkz37t3thx9+iHmOLVu2WLdu3ax06dJWtmxZ69mzp+3YsSOmzIoVK+zcc8+14sWLW/Xq1W3EiBGHLMvkyZOtdu3aroxe85133jmK7xwAAKSafA1NO3futAYNGthTTz11yGO7du2yZcuW2T333ON+vvHGG7Z27Vq79NJLY8opMK1atcpmzZpl06ZNc0Hs5ptvjj6elZVlbdu2tZNPPtmWLl1qjz76qA0dOtSeeeaZaJn58+fb1Vdf7QLXp59+ap07d3a3zz///CivAQAAkCoyIpFIxJKAapqmTJniwkp2Fi9ebGeddZZ99913dtJJJ9nq1autbt267v4mTZq4MjNmzLAOHTrY999/72qnxo0bZ4MHD7aNGzda0aJFXZm77rrL1WqtWbPG/X7VVVe5AKfQFWjWrJk1bNjQxo8f77X8CmdlypSx7du3u1qvdMJ3U6UXvpsqvXB8p5d0PL6zcvD5nVJ9mvSGFK7UDCcLFixw/w8Ck7Rp08YKFSpkCxcujJZp2bJlNDBJu3btXK3V1q1bo2X0d2Eqo/uzs2fPHreiwzcAAFBwpUxo2r17t+vjpGa0IAmq9qhSpUox5TIzM618+fLusaBM5cqVY8oEvx+pTPB4IsOHD3fJNLiprxQAACi4UiI0qVP4b37zG1NLoprbksGgQYNczVdw27BhQ34vEgAAOIoyLUUCk/oxzZkzJ6a9sUqVKrZ58+aY8vv373cj6vRYUGbTpk0xZYLfj1QmeDyRYsWKuRsAAEgPhVIhMH311Vf2/vvvW4UKFWIeb968uW3bts2NigsoWB08eNCaNm0aLaMRdXqugEbanX766VauXLlomdmzZ8c8t8rofgAAgHwPTZpPafny5e4m69atc/9fv369CzlXXHGFLVmyxCZMmGAHDhxwfYx027t3rytfp04da9++vd100022aNEimzdvnvXp08e6du3qRs7JNddc4zqBazoBTU0wadIkGzNmjA0YMCC6HH379nWj7kaOHOlG1GlKAr2ungsAACDfQ5OCyZlnnuluoiCj/w8ZMsT++c9/2ltvveWmDtDQ/6pVq0ZvmlcpoEClSSlbt27tphpo0aJFzBxM6qQ9c+ZMF8gaN25sd9xxh3v+8FxOZ599tk2cONH9neaNev31192UBPXq1TvGawQAACSrpJmnKdUxTxPSRTrO45LOOL7TSzoe31kFdZ4mAACA/EJoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAA8EBoAgAASPbQNHfuXLvkkkusWrVqlpGRYVOnTo15PBKJ2JAhQ6xq1apWokQJa9OmjX311VcxZbZs2WLdunWz0qVLW9myZa1nz562Y8eOmDIrVqywc88914oXL27Vq1e3ESNGHLIskydPttq1a7sy9evXt3feeecovWsAAJCK8jU07dy50xo0aGBPPfVUwscVbsaOHWvjx4+3hQsXWqlSpaxdu3a2e/fuaBkFplWrVtmsWbNs2rRpLojdfPPN0cezsrKsbdu2dvLJJ9vSpUvt0UcftaFDh9ozzzwTLTN//ny7+uqrXeD69NNPrXPnzu72+eefH+U1AAAAUkVGRNU5SUA1TVOmTHFhRbRYqoG644477M4773T3bd++3SpXrmwvvviide3a1VavXm1169a1xYsXW5MmTVyZGTNmWIcOHez77793fz9u3DgbPHiwbdy40YoWLerK3HXXXa5Wa82aNe73q666ygU4ha5As2bNrGHDhi6w+VA4K1OmjFtG1Xqlkxp3Tc/vRcAx9O3DHfN7EXAMcXynl3Q8vrNy8PmdtH2a1q1b54KOmuQCelNNmza1BQsWuN/1U01yQWASlS9UqJCrmQrKtGzZMhqYRLVVa9euta1bt0bLhF8nKBO8TiJ79uxxKzp8AwAABVfShiYFJlHNUph+Dx7Tz0qVKsU8npmZaeXLl48pk+g5wq+RXZng8USGDx/uQlxwU18pAABQcCVtaEp2gwYNclV5wW3Dhg35vUgAACAdQ1OVKlXcz02bNsXcr9+Dx/Rz8+bNMY/v37/fjagLl0n0HOHXyK5M8HgixYoVc22f4RsAACi4kjY01axZ04WW2bNnR+9TvyH1VWrevLn7XT+3bdvmRsUF5syZYwcPHnR9n4IyGlG3b9++aBmNtDv99NOtXLly0TLh1wnKBK8DAACQr6FJ8yktX77c3YLO3/r/+vXr3Wi6fv362QMPPGBvvfWWrVy50rp37+5GxAUj7OrUqWPt27e3m266yRYtWmTz5s2zPn36uJF1KifXXHON6wSu6QQ0NcGkSZNszJgxNmDAgOhy9O3b1426GzlypBtRpykJlixZ4p4LAABAMvNzNSiYtGrVKvp7EGR69OjhphUYOHCgmwpA8y6pRqlFixYu3GgCysCECRNcuGndurUbNdelSxc3t1NAnbRnzpxpvXv3tsaNG1vFihXdhJnhuZzOPvtsmzhxot199932xz/+0U499VQ3JUG9evWO2boAAADJLWnmaUp1zNOEdJGO87ikM47v9JKOx3dWQZinCQAAIJkQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAADwQmgAAAFI9NB04cMDuueceq1mzppUoUcJOOeUUu//++y0SiUTL6P9DhgyxqlWrujJt2rSxr776KuZ5tmzZYt26dbPSpUtb2bJlrWfPnrZjx46YMitWrLBzzz3XihcvbtWrV7cRI0Ycs/cJAACSX1KHpkceecTGjRtnTz75pK1evdr9rjDzxBNPRMvo97Fjx9r48eNt4cKFVqpUKWvXrp3t3r07WkaBadWqVTZr1iybNm2azZ07126++ebo41lZWda2bVs7+eSTbenSpfboo4/a0KFD7Zlnnjnm7xkAACSnTEti8+fPt06dOlnHjh3d7zVq1LBXXnnFFi1aFK1lGj16tN19992unLz88stWuXJlmzp1qnXt2tWFrRkzZtjixYutSZMmroxCV4cOHeyxxx6zatWq2YQJE2zv3r32/PPPW9GiRe2MM86w5cuX26hRo2LCFQAASF9JXdN09tln2+zZs+3LL790v3/22Wf297//3S666CL3+7p162zjxo2uSS5QpkwZa9q0qS1YsMD9rp9qkgsCk6h8oUKFXM1UUKZly5YuMAVUW7V27VrbunVrwmXbs2ePq6EK3wAAQMGV1DVNd911lwsjtWvXtsKFC7s+Tg8++KBrbhMFJlHNUph+Dx7Tz0qVKsU8npmZaeXLl48po35T8c8RPFauXLlDlm348OE2bNiwPH2/AAAgeSV1TdNrr73mms4mTpxoy5Yts5deesk1qelnfhs0aJBt3749etuwYUN+LxIAAEjXmqbf//73rrZJfZOkfv369t1337lanh49eliVKlXc/Zs2bXKj5wL6vWHDhu7/KrN58+aY592/f78bURf8vX7qb8KC34My8YoVK+ZuAAAgPSR1TdOuXbtc36MwNdMdPHjQ/V9Nago16vcUUHOe+io1b97c/a6f27Ztc6PiAnPmzHHPob5PQRmNqNu3b1+0jEbanX766Qmb5gAAQPpJ6tB0ySWXuD5M06dPt2+//damTJniRrRddtll7vGMjAzr16+fPfDAA/bWW2/ZypUrrXv37m5EXOfOnV2ZOnXqWPv27e2mm25yo+7mzZtnffr0cbVXKifXXHON6wSu+Zs0NcGkSZNszJgxNmDAgHx9/wAAIHkkdfOcpgbQ5Ja33Xaba2JTyPntb3/rJrMMDBw40Hbu3OmmBlCNUosWLdwUA5qkMqB+UQpKrVu3djVXXbp0cXM7hUfczZw503r37m2NGze2ihUrutdgugEAABDIiISn10auqVlQ4UudwjXzeDqpcdf0/F4EHEPfPvx/86YhPXB8p5d0PL6zcvD5ndTNcwAAAMmC0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAOCB0AQAAHA0v7BXX4775z//2VavXu1+P+OMM+zGG290398CAABQ0OSqpmnJkiV2yimn2OOPP25btmxxt1GjRrn7li1blvdLCQAAkIo1Tf3797dLL73Unn32WcvM/L+n2L9/v/Xq1cv69etnc+fOzevlBAAASL3QpJqmcGByT5SZaQMHDrQmTZrk5fIBAACkbvNc6dKlbf369Yfcv2HDBjv++OPzYrkAAABSPzRdddVV1rNnT5s0aZILSrq9+uqrrnnu6quvzvulBAAASMXmuccee8wyMjKse/furi+TFClSxG699VZ7+OGH83oZAQAAUjM0FS1a1MaMGWPDhw+3r7/+2t2nkXMlS5bM6+UDAABI/cktf/jhB3erVauWC0yRSCTvlgwAACDVQ9N//vMfa926tZ122mnWoUMH+9e//uXuVz+nO+64I6+XEQAAIDVDk+ZpUh8mjaALN8mpg/iMGTPycvkAAABSt0/TzJkz7b333rMTTzwx5v5TTz3Vvvvuu7xaNgAAgNSuadq5c2fCTt/6OpVixYrlxXIBAACkfmg699xz7eWXX47+rukHDh48aCNGjLBWrVrl5fIBAACkbvOcwpE6guvrVPbu3eu+PmXVqlWupmnevHl5v5QAAACpWNNUr149+/LLL61FixbWqVMn11x3+eWX26effurmawIAAChoclXTpFFz1atXt8GDByd87KSTTsqLZQMAAEjtmqaaNWvajz/+mHD+Jj0GAABQ0OQqNGnmb3X+jrdjxw4rXrx4XiwXAABA6jbPDRgwwP1UYLrnnntiph04cOCALVy40Bo2bJj3SwkAAJBKoUkdvYOappUrV7ov7g3o/w0aNLA777wz75cSAAAglULTBx984H7ecMMNNmbMGCtduvTRWi4AAIDUHz33wgsv5P2SAAAAFLTQpHmZHn74YZs9e7Zt3rzZzQYe9s033+TV8gEAAKRuaOrVq5d99NFHdt1111nVqlUTjqQDAACwdA9N7777rk2fPt3OOeecvF8iAACAgjJPU7ly5ax8+fJ5vzQAAAAFKTTdf//9NmTIENu1a1feLxEAAEBBaZ4bOXKkff3111a5cmWrUaOGFSlSJObxZcuW5dXyAQAApG5o6ty5c94vCQAAQEELTffee2/eLwkAAEBBC02BpUuX2urVq93/zzjjDDvzzDPzarkAAABSPzRpQsuuXbvahx9+aGXLlnX3bdu2zVq1amWvvvqqnXDCCXm9nAAAAKk3eu7222+3//73v7Zq1SrbsmWLu33++eeWlZVlv/vd7/J+KQEAAFIxNM2YMcOefvppq1OnTvS+unXr2lNPPeUmvsxL//znP+3aa6+1ChUqWIkSJax+/fq2ZMmS6OORSMRNf6CZyfV4mzZt7Kuvvop5DoW6bt26uS8YVs1Yz549bceOHTFlVqxYYeeee64VL17cqlevbiNGjMjT9wEAANIwNOm75uKnGRDdF/89dD/H1q1b3azjel6FsS+++MJNd6DJNQMKN2PHjrXx48fbwoULrVSpUtauXTvbvXt3tIwCk2rFZs2aZdOmTbO5c+fazTffHH1cNWRt27a1k08+2fXTevTRR23o0KH2zDPP5Nl7AQAAadin6YILLrC+ffvaK6+8YtWqVYvWCPXv399at26dZwv3yCOPuFqfF154IXpfzZo1Y2qZRo8ebXfffbd16tTJ3ffyyy+7+aOmTp3q+l2po7pqxhYvXmxNmjRxZZ544gnr0KGDPfbYY275J0yYYHv37rXnn3/eihYt6jq1L1++3EaNGhUTrgAAQPrKVU3Tk08+6WpnNLHlKaec4m4KM7pPgSSvvPXWWy7oXHnllVapUiU3Ou/ZZ5+NPr5u3TrbuHGja5ILlClTxpo2bWoLFixwv+unmuSCwCQqX6hQIVczFZRp2bKlC0wB1VatXbvW1XYlsmfPHvd+wzcAAFBw5aqmSbU/mvX7/ffftzVr1rj71L8pHF7ywjfffGPjxo2zAQMG2B//+EdXW6SO5go3PXr0cIFJVLMUpt+Dx/RTgSssMzPTfXdeuEy4Biv8nHos3BwYGD58uA0bNixP3y8AACggNU1z5sxxHb5Vq5KRkWEXXnihG0mn269//WvXrPXxxx/n2cKpf1SjRo3soYcecrVMaiq76aabXP+l/DZo0CDbvn179LZhw4b8XiQAAJAsoUn9hxRaNAotnprFfvvb37p+QHlFI+IU0sJUo7V+/Xr3/ypVqrifmzZtiimj34PH9FPzSoXt37/fjagLl0n0HOHXiFesWDG3HsI3AABQcOUoNH322WfWvn37bB/XCDSNPssrGjmnfkVhX375pRvlJmpSU6iZPXt29HHVgqmvUvPmzd3v+qmJN8PLpRoz1WKp71NQRiPq9u3bFy2jkXann356wqY5AACQfnIUmlT7kmiqgXBfoR9//NHyikbjffLJJ6557h//+IdNnDjRTQPQu3dv97iaCPv162cPPPCA6zS+cuVK6969uxsRF3ypsGqmFPRUQ7Zo0SKbN2+e9enTx42sC0b+XXPNNa6flOZv0tQEkyZNsjFjxri+VAAAADnuCP6LX/zCzfxdq1athI9rgkg1qeUV9ZOaMmWK6z903333uZolNRFq3qXAwIEDbefOna6/k2qUWrRo4aYY0CSVAU0poKCk6RA0aq5Lly5ubqdw0+LMmTNdGGvcuLFVrFjRTZjJdAMAACCQEdFkR57U4VvfN6dRbOFQIj/99JOdddZZ7vvnwoEkXahZUOFLncLTrX9Tjbum5/ci4Bj69uGO+b0IOIY4vtNLOh7fWTn4/M5RTZMmkXzjjTfstNNOczU36vMjmnZAX6Fy4MABGzx48M9begAAgCSUo9CkuYvmz59vt956q2syCyqp1LdIk0EqOMXPmQQAAJCWk1tq5No777zjZspW52wFp1NPPZVRZgAAoEDL1YzgopCkjtoAAADpIFffPQcAAJBuCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAeCE0AAAAFLTQ9/PDDlpGRYf369Yvet3v3buvdu7dVqFDBjjvuOOvSpYtt2rQp5u/Wr19vHTt2tJIlS1qlSpXs97//ve3fvz+mzIcffmiNGjWyYsWKWa1atezFF188Zu8LAAAkv5QJTYsXL7Y//elP9qtf/Srm/v79+9vbb79tkydPto8++sh++OEHu/zyy6OPHzhwwAWmvXv32vz58+2ll15ygWjIkCHRMuvWrXNlWrVqZcuXL3ehrFevXvbee+8d0/cIAACSV0qEph07dli3bt3s2WeftXLlykXv3759u/35z3+2UaNG2QUXXGCNGze2F154wYWjTz75xJWZOXOmffHFF/bXv/7VGjZsaBdddJHdf//99tRTT7kgJePHj7eaNWvayJEjrU6dOtanTx+74oor7PHHH8+39wwAAJJLSoQmNb+pJqhNmzYx9y9dutT27dsXc3/t2rXtpJNOsgULFrjf9bN+/fpWuXLlaJl27dpZVlaWrVq1Klom/rlVJniORPbs2eOeI3wDAAAFV6YluVdffdWWLVvmmufibdy40YoWLWply5aNuV8BSY8FZcKBKXg8eOxwZRSEfvrpJytRosQhrz18+HAbNmxYHrxDAACQCpK6pmnDhg3Wt29fmzBhghUvXtySyaBBg1zzYHDTsgIAgIIrqUOTmt82b97sRrVlZma6mzp7jx071v1ftUHql7Rt27aYv9PouSpVqrj/62f8aLrg9yOVKV26dMJaJtEoOz0evgEAgIIrqUNT69atbeXKlW5EW3Br0qSJ6xQe/L9IkSI2e/bs6N+sXbvWTTHQvHlz97t+6jkUvgKzZs1yIadu3brRMuHnCMoEzwEAAJDUfZqOP/54q1evXsx9pUqVcnMyBff37NnTBgwYYOXLl3dB6Pbbb3dhp1mzZu7xtm3bunB03XXX2YgRI1z/pbvvvtt1Lldtkdxyyy325JNP2sCBA+3GG2+0OXPm2GuvvWbTp0/Ph3cNAACSUVKHJh+aFqBQoUJuUkuNaNOot6effjr6eOHChW3atGl26623ujCl0NWjRw+77777omU03YACkuZ8GjNmjJ144on23HPPuecCAACQjEgkEmFV/HwaaVemTBnXKTzd+jfVuIsauXTy7cMd83sRcAxxfKeXdDy+s3Lw+Z3UfZoAAACSBaEJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAAAg1UPT8OHD7de//rUdf/zxVqlSJevcubOtXbs2pszu3butd+/eVqFCBTvuuOOsS5cutmnTppgy69evt44dO1rJkiXd8/z+97+3/fv3x5T58MMPrVGjRlasWDGrVauWvfjii8fkPQIAgNSQ1KHpo48+coHok08+sVmzZtm+ffusbdu2tnPnzmiZ/v3729tvv22TJ0925X/44Qe7/PLLo48fOHDABaa9e/fa/Pnz7aWXXnKBaMiQIdEy69atc2VatWply5cvt379+lmvXr3svffeO+bvGQAAJKeMSCQSsRTx448/upoihaOWLVva9u3b7YQTTrCJEyfaFVdc4cqsWbPG6tSpYwsWLLBmzZrZu+++axdffLELU5UrV3Zlxo8fb3/4wx/c8xUtWtT9f/r06fb5559HX6tr1662bds2mzFjhteyZWVlWZkyZdwylS5d2tJJjbum5/ci4Bj69uGO+b0IOIY4vtNLOh7fWTn4/E7qmqZ4ekNSvnx593Pp0qWu9qlNmzbRMrVr17aTTjrJhSbRz/r160cDk7Rr186tpFWrVkXLhJ8jKBM8RyJ79uxxzxG+AQCAgitlQtPBgwdds9k555xj9erVc/dt3LjR1RSVLVs2pqwCkh4LyoQDU/B48NjhyigI/fTTT9n2t1IyDW7Vq1fPw3cLAACSTcqEJvVtUvPZq6++aslg0KBBruYruG3YsCG/FwkAABxFmZYC+vTpY9OmTbO5c+faiSeeGL2/SpUqroO3+h6Fa5s0ek6PBWUWLVoU83zB6LpwmfgRd/pdbZslSpRIuEwaZacbAABID0ld06Q+6gpMU6ZMsTlz5ljNmjVjHm/cuLEVKVLEZs+eHb1PUxJoioHmzZu73/Vz5cqVtnnz5mgZjcRTIKpbt260TPg5gjLBcwAAAGQme5OcRsa9+eabbq6moA+S+hCpBkg/e/bsaQMGDHCdwxWEbr/9dhd2NHJONEWBwtF1111nI0aMcM9x9913u+cOaopuueUWe/LJJ23gwIF24403uoD22muvuRF1AAAASV/TNG7cONdf6Pzzz7eqVatGb5MmTYqWefzxx92UAprUUtMQqKntjTfeiD5euHBh17SnnwpT1157rXXv3t3uu+++aBnVYCkgqXapQYMGNnLkSHvuuefcCDoAAICUm6cpmTFPE9JFOs7jks44vtNLOh7fWQV1niYAAID8QmgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGgCAADwQGiK89RTT1mNGjWsePHi1rRpU1u0aFF+LxIAAEgChKaQSZMm2YABA+zee++1ZcuWWYMGDaxdu3a2efPm/F40AACQzwhNIaNGjbKbbrrJbrjhBqtbt66NHz/eSpYsac8//3x+LxoAAMhnmfm9AMli7969tnTpUhs0aFD0vkKFClmbNm1swYIFh5Tfs2ePuwW2b9/ufmZlZVm6ObhnV34vAo6hdNzH0xnHd3pJx+M763/vORKJHLEsoel//v3vf9uBAwescuXKMffr9zVr1hxSfvjw4TZs2LBD7q9evfpRXU4gv5UZnd9LAOBoSefj+7///a+VKVPmsGUITbmkGin1fwocPHjQtmzZYhUqVLCMjIx8XTYcmysTBeQNGzZY6dKl83txAOQhju/0EolEXGCqVq3aEcsSmv6nYsWKVrhwYdu0aVPM/fq9SpUqh5QvVqyYu4WVLVv2qC8nkotOqJxUgYKJ4zt9lDlCDVOAjuD/U7RoUWvcuLHNnj07pvZIvzdv3jxflw0AAOQ/appC1NzWo0cPa9KkiZ111lk2evRo27lzpxtNBwAA0huhKeSqq66yH3/80YYMGWIbN260hg0b2owZMw7pHA6oaVbzecU30QJIfRzfyE5GxGeMHQAAQJqjTxMAAIAHQhMAAIAHQhMAAIAHQhMAAIAHQhMAAIAHphwAPL+b8Pnnn3df3qzpKEQzxZ999tl2/fXX2wknnJDfiwgAOMqoaQKOYPHixXbaaafZ2LFj3VT7LVu2dDf9X/fVrl3blixZkt+LCeAo0XfQ3Xjjjfm9GEgCzNMEHEGzZs2sQYMGNn78+EO+jFmHzy233GIrVqxwtVAACp7PPvvMGjVqZAcOHMjvRUE+o3kO8Dhhvvjii4cEJtF9/fv3tzPPPDNflg3Az/fWW28d9vFvvvnmmC0LkhuhCTgC9V1atGiRa4ZLRI/xVTtA6urcubO7ADpcw0uiiyakH0ITcAR33nmn3XzzzbZ06VJr3bp1NCBt2rTJZs+ebc8++6w99thj+b2YAHKpatWq9vTTT1unTp0SPr58+XJr3LjxMV8uJB9CE3AEvXv3tooVK9rjjz/uTqxBv4bChQu7E6ma7n7zm9/k92ICyCUdx7ooyi40HakWCumDjuBADuzbt89NPyAKUkWKFMnvRQLwM3388ce2c+dOa9++fcLH9ZhGyJ533nnHfNmQXAhNAAAAHpinCQAAwAOhCQAAwAOhCQAAwAOhCQAAwAOhCUDaGDp0qDVs2DC/FwNAiiI0AUhJ119/vZs/J/4WDBvX/6dOnXrIRKWakPRYI6wBBQOTWwJIWQpIL7zwQsx9xYoVy7b8cccd524AkBvUNAFIWQpI+m7A8K1cuXJWo0YN9/hll13mapyC3+NrfDS7+4ABA6xs2bJWoUIFGzhwoPXo0cN9F1lAfzt69OiY19Vz6LkC27Zts169etkJJ5xgpUuXtgsuuMB90bNoxvhhw4a534PaMN0no0aNsvr161upUqWsevXqdtttt9mOHTuO8loDkFuEJgAFzuLFi91P1UL961//iv4eb+TIkS7APP/88/b3v//dtmzZYlOmTMnx61155ZW2efNme/fdd93XcTRq1Mh9T6Ge76qrrrI77rjDzjjjDLcsuuk+KVSokI0dO9ZWrVplL730ks2ZM8cFNwDJidAEIGVNmzYt2uQW3B566CFX4yOqQVLtU/B7PNUgDRo0yC6//HKrU6eOjR8/3sqUKZOjZVDYWrRokU2ePNmaNGlip556qvsCZ73266+/biVKlHDLlZmZGa0N033Sr18/a9WqlavNUu3UAw88YK+99loerBkARwN9mgCkLAWOcePGxdxXvnx5r7/dvn27q/Vp2rRp9D4FGwWfnHy7lJrd1KSm5r2wn376yb7++uvD/u37779vw4cPtzVr1lhWVpbt37/fdu/ebbt27bKSJUt6LwOAY4PQBCBlqS9QrVq1juprqAktPkTpi5sDCkxVq1a1Dz/88JC/VW1Tdr799lu7+OKL7dZbb7UHH3zQhT3VWvXs2dP27t1LaAKSEKEJQIFUpEgR19E7O2qGU9hZuHChtWzZ0t2nmp6gT1JATXuqkQqoRmjdunXR31V248aNrpYq6HAer2jRoocsi17n4MGDrl+VgpnQNAckN/o0AUhZe/bscYElfPv3v//tHlOA0ZxMum/r1q0J/75v37728MMPu/mc1ESm0WsaCRemvkZ/+ctf7OOPP7aVK1e60XWFCxeOPt6mTRtr3ry5G3E3c+ZMV4M0f/58Gzx4sC1ZsiS6LApay5cvd8un5VYNmWqsnnjiCfvmm2/ca6hPFYDkRWgCkLJmzJjhaovCtxYtWrjHVIMza9YsN5T/zDPPTPj3GtV23XXXuSCk4HP88ce7aQrC1FH8vPPOc01pHTt2dOHolFNOiT6uKQTeeecdV1t1ww032GmnnWZdu3a17777zipXruzKdOnSxc0ppT5Yqrl65ZVXrEGDBm7KgUceecTq1atnEyZMcP2bACSvjEhOejwCQBrMNK7apvjZxAGAmiYAAAAPhCYAAAAPNM8BAAB4oKYJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAA6EJAADAjuz/Ab+ULIwnsjQyAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "count    25000.00000\n",
       "mean      1325.06964\n",
       "std       1003.13367\n",
       "min         52.00000\n",
       "25%        702.00000\n",
       "50%        979.00000\n",
       "75%       1614.00000\n",
       "max      13704.00000\n",
       "Name: length, dtype: float64"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAASlFJREFUeJzt3QmczfX++PE3Y4xByE7Gcin7rnCT7EJd4tdts1ToEgldW0mDREpSkSRL93It90aF7Pu+ZCcpQtla7MPYvv/H+3P+3+OcMzPmO+PMzDlnXs/H4zjO9/uZ7/l+3+d7znmfz/bNYFmWJQAAALitjLdfDQAAAEXSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEpICVK1dKhgwZzH1qqFevnrkll+5rdHS0hLJRo0ZJjhw55Mknn5Tff/9dKlSoINu3b0+TfXnppZekcePGafLc8K8//vhDsmXLJgsWLEjrXUEqIGlCUJoyZYr5ot+6dasEi+nTp8sHH3yQ1ruRbo0YMUIGDBggJ06ckPz580tERIRUrlw51ffj8OHDMnHiRHnttdeS9fc7d+6U+vXrS506deSBBx6QmTNnSijat2+fSeR//vlnCWR58uSRTp06yRtvvJHWu4JUQNIEpIC6devK5cuXzb2NpCltbdy40SRNq1evll9//VU2b94sGTOm/kfgmDFjpESJEibxSarz589LkyZNpHPnzrJ27VqZMWOGvPjii+bYQjFpGjx4cMAnTapLly7y3XffyfLly9N6V5DCSJqAFKBfxlmyZEmTL+VAdPPmTbly5Uqa7kPJkiXd/y9UqJCEhYWl+j5cu3ZNpk2bJn//+9+T9ffz5s2TzJkzyzPPPGMe/+Uvf5GWLVvK5MmTJS1dunRJgkVK7GvZsmVNc6/WgCO08YmOkKZ9Vpo1a2b6smTPnl0aNmwY51e53dS3bt066d27t+TLl8/0UXj88cflt99+i/Plr00GhQsXlqxZs5raAv1FXLx4cXnuuecS7NOk/Y3mz58vR44cMcv1pn/j+fy+v6gT6hc1YcIEkwBERkaa5pk1a9Y4jkdsbKz06tXLHONdd90lf/vb3+SXX36Jt6zWxrzwwgtSoEAB05RVvnx5mTRpkqPn0f3u3r27SRD07/TvFy5cmKTtfvTRR2adxvnuu++WGjVqmNq6pO6jHcdZs2bJsGHDpEiRIiah1XPhxx9/9CqrsXziiSekaNGiZntRUVEmXlpr6OnkyZPy/PPPm21pOU3CNHlJrFZEa4e0P1WjRo2StY/6Wuk6T/fcc48cO3ZMErNp0yZp3ry5iaWe35UqVTK1XrZdu3aZc1gTMX3uggULmthqnx1Pev7rvup5r8mbbk+bCpOyDfu169ixo3kvaQy19q1r165y9epV857Q10Hpe8x+z3i+F7799lt56KGHzLHoudyiRQvZu3ev13Povuj7/qeffjLHruWeffZZ93tZa371nNF91XPoH//4h5w5c8ZrG9oFoGnTppI3b17zntP91GPypX3UvvnmG7EsK9HXAsErU1rvAJBS9ANUP1Q1Yerbt6+Eh4fLp59+ahKYVatWSc2aNb3Kv/zyy+YL4M033zRffvqBql/8nn1GtHln5MiR8thjj5kPUu1foveJ1aK8/vrrcu7cOfOlN3r0aLNMP8yT6vPPPzcf7H/961+lZ8+ecujQIZP45M6d23zBJ0b7Xvz73/82X3a6DW1O0C8bX6dOnZJatWq5kx9NsvRLSr/ktIlInzsxum1NAvTv9QtHk0Sn2/3ss8+kR48e8n//93/yyiuvmPjqF7J+8du1LEndR+3TpDV///znP81roa+jfoHqNm2zZ8+WmJgY8+WtfVW0CU+TN33ddJ2tTZs25vzSc0aP6/Tp07JkyRI5evSoOxmOz/r1683+Vq1aNd71ie2jJkjHjx+Pk3z4JlK+dN8effRRk9xpPDWZ2b9/v6m50sd2GT2fNBnU9Xp8mqDrvf7Q0P32pEnNvffeK2+//bY7UXC6DT0GTfjPnj1rmhfLlCljjuO///2vib82a+vr/+GHH5q+X1qTo+z7f/3rX9KhQwfz3nvnnXfM33zyyScmedMfSp6vwfXr1005Xffee++ZJFzp+0iTM91XfS7ta/bxxx+bv9cfUPp5oa+rNofqudW/f3/JlSuX+Wz48ssv48S4evXq5r2tx6q1TghRFhCEJk+erJ/S1pYtWxIs06pVKytz5szWTz/95F52/Phx66677rLq1q0bZ1uNGjWybt686V7eq1cvKywszDp79qx5fPLkSStTpkxmu56io6PN33fo0MG9bMWKFWaZ3ttatGhhFStWLMFjOXz4sNdy321cvXrVyp8/v1WlShUrNjbWXW7ChAmm3MMPP3zbmO3YscOUe+mll7yWP/PMM2b5m2++6V7WsWNHq1ChQtbvv//uVfapp56ycubMacXExNz2uXR7GTNmtPbu3eu13Ol2W7ZsaZUvX/62z+F0W3Ycy5Yt6xW3MWPGmOW7d+92L4vvuIYPH25lyJDBOnLkiHl85swZ83fvvvuulVRt27a18uTJE2e5033UczFv3rzWrFmzzGM9t/V8XrduXYLPef36datEiRLm3NN99+R5vsd37P/5z3/M869evdq9TM8TXfb000/HKe90G+3btzfnR3zvX3ufZs+eHec9pC5cuGDlypXL6ty5s9dyfX/q6+65XN+Tuo3+/ft7lV2zZo1ZPm3aNK/lCxcu9Fo+Z86cRD9nbOvXrzdlZ86cmWhZBC+a5xCSbty4IYsXL5ZWrVqZpgKb/tLWmgptJtHaCE/6i9fz17TWUul2tElNLVu2zPxq1eHinrS2ITVoM4H+8tVOp9qvxbMJImfOnIn+vT0kWn9Ve/KtkdGc53//+5+pTdP/a3OSfdNf7FoDop1eE/Pwww9LuXLlkrVd/UWvtTtbtmyJd9vJ2UetUfCMm76+SmtGbNr84tn3RbenNXL6HPb0BFpGt6NNRb5NOYnRZiqtzUxIYvuor/OiRYtk7NixZp1OnzB+/HizjwnR/dZaFH2dNa6ePM93z2PXmj09dq3JU/G93noe+nKyDW0Wmzt3rnnttMnVl2+Nli+tzdIaqqefftrrddc+alp7vGLFijh/ozWHnrTWUGOpTWqe29DaIq0Btrdhx0tr5LQ/2u3Yr6tuB6GL5jmEJO2LpFX2pUuXjrNOq/j1g1v7gWh/Bpv2Y4nvQ9D+YrSTp1KlSnmV06ax230R+ov9/Nok4kmbETwTw9v9vTb9eHaIVr4x0tjpl5I2q+gtPpq8JUb7fiR3u/369ZOlS5eaJhyNtzaRaLL74IMPJnsfE3t9lTavDRo0SL7++us4CZEmYkr732iT0Kuvvmr6wWhSoE1f7du3N01Sibldnxcn+1itWrUkzf+l/XlUYk1Gf/75pxmtpiPyfGNnH/vtXl+n29DXTn+wJLcJ6+DBg+a+QYMG8a7X5nhPmTJlitN8qdvQ/dGpJ+Jj77sm/toUq8ekTW/atK8/xPRc1PMgvtc1saQPwY2kCfj/EhpNldIdOxP6kNVarrSgCaVq27at6TcSH+1EnBjPWoekblcT2wMHDphf+NqBXGuVxo0bZxIa/QJLzj4m9vpqvLXmQb/4NWnTfjbayVj72mhtnv2cSmtttKZEa0y05kfn6Bk+fLjpx5VQfyWl/aRuVzuV2D5qB/SnnnoqznrdP8+BCMmhI/q0z1WfPn2kSpUqpsZFj/mRRx7xOvaEXt/kbCM57O1ov6b4klRNkjxpcuM7ilW3oQmTDlSIj/Zhst+b2s9K+2NpJ299rbUTuE6Uqss8+yXar6v230PoImlCSNIPPe3wqV+8vr7//nvzIeqk47SnYsWKmXsdzeT5K1ubXJw00ySUHNm1CVpzEl/Nku/z669kz1/Z2mygzS+JTdSof69fFlrz4Fm75Bsje2SdJhG+o7zuRFK3qwmLNj/pTUdUtW7d2ows0874KbGPu3fvlh9++EGmTp1qao08m4PiozV2WtukN31NNEnQL1PtaJ8QTcT0i1prOZw0qfrSJCGps8zbNYt79uxJMFZ6/mrzsyakmpj61uo44XQb+tppbZDuT3LeL/bxaNKT3Ndet6E1mVpzGV/y50trE/Wm55+O4NTO+VqbpgMrbPoe9OysjtBEnyaEJP3Frk06X331ldcwcB1xpR96OpLGtxo/MTr8W3/F6igdTzrixglNAuJr5rC/BHTSRZsmA77NTtr/Q79wtA+LJhE2HQHkm3DFR6deUDoiyZPvhJsaO22S0Nqd+L7YfKdhcCop2/Udoq79fLR/lNa4aJKYEvto1/J41izq/z2H5Stt9vUdLamvoSZxOqXD7dSuXdtsc9u2bZJatDlPk3x9nX3PE/tY4zt2lZTJWJ1uQ3+waBOX1tzEN6O//ff6flG++6x91vS9q6P24utn5OS11xoxfY8NHTo0zjrtt2g/pyaCvsejybHyfa31NdVE2LPJH6GHmiYENZ2Tx57/x5MOo37rrbdMLYEmSNp5WxMenXJAP+x0KHdSaf8V3a7WJugwf21y0CkHdJi7Vskn1pdBO5nq9AU6F9T9999vqva1iUc/ZPVXrNagaNOQ9pHSX7H64e3bd0mPSYdKa02T1sDor1ud2NBJnyb9sNfOs9rMpcmbdh7WmgHfuYrsoe/aGVY71urs05qw6L5pZ179ha7/Tw6n29WEV2tVtCZA467D4zU51ekRNDlJiX3UWiBNfnS4vzbJ6RezJmW+tYhaG6UJtH7x6nPqeTVnzhyTkMfXdOZJz0VtotP9S6hPjr9pkqKJvp5reg5oZ3MdEKE1rjo8Xpuc9Fh1mL++LzQR0akNdCCFXXviRFK2oQmPrtM+QzoAQ2tn9PI22kFbB2loB2zdV03EtP+Ynq/azKYx0xomPZ527dqZhFBjrj8mtD+azoWm50xiP2T0efV9pE2qO3bsMOebvr+0Vkz3QRNlne5Cax31/aJztum5ceHCBTMdhh6rzvvkST9rNMb0aQpxaT18D0gOe5h+Qrdjx46Zct99953VtGlTK3v27FbWrFmt+vXrm6HB8W3Ld1hxfNMG6PDtN954wypYsKAVGRlpNWjQwNq/f78ZRt6lS5fb/u3FixfN8H4dLq3rPKcf0KHjOuVBRESEVaBAAeu1116zlixZEu+Q63Hjxpkh5Fq2Ro0aZii3TjeQ2JQD6vLly1aPHj3M/mbLls167LHHTKx8pxxQp06dsrp162ZFRUVZ4eHh5pgbNmxopjhIjG5P/zY+Trb76aefmmkhdD/1OEuWLGn16dPHOnfuXJK3Zb8WOoTdk07xoMv19bft27fPvA56vujQfh2+vnPnTq9yOsWBPmeZMmVMDHWYe82aNd3TACRG41+qVCmvZUnZx+Rau3at1bhxYzNFge53pUqVrI8++si9/pdffrEef/xxc37qMT3xxBNmig7fc8OecuC3336L8xxOt6F0CgedeiBfvnzmNf7LX/5i4uo55cJnn31mluvUH77vBf2/vrf1ebJkyWLOkeeee87aunWr15QDeqwJ0fOkevXq5r2scalYsaLVt29fs8/254dOrVC0aFGzjzrlx6OPPur1HEo/A3T/li5dmoRXBMEog/6T1okbEMy0Kl/7JWktkE5iCdyOTh+gtVpaQ6k1Vgh+OjBAm9e1iY6aptBGnyYgCXwvp+HZZ0OHIwOJ0aZUnbVcmxcR/LT/3cSJE82PJhKm0EdNE5AE2ulab9qfQfskaf+L//znP6ZPhPYNAQCELjqCA0mgc/9ox1/t7KoT9Nmdw/VXJgAgtFHTBAAA4AB9mgAAABwgaQIAAHCAPk0O6KUnjh8/bibVY3QEAADBQXsg6aSkhQsXjnMNwuQgaXJAE6akXqcMAAAEhmPHjkmRIkXueDskTQ7Yl23QoCf1emUJ0csM6GUE7On70yvi4EIcXIiDC3G4hVi4EIfkxUFHOWulh/09fqdImhywm+Q0YfJn0pQ1a1azvfT+BiAOxMFGHFyIwy3EwoU43Fkc/NW1ho7gAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4EAmJ4UQHIr3n59omZ9HtEiVfQEAINRQ0wQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAABHrSVLx4ccmQIUOcW7du3cz6K1eumP/nyZNHsmfPLm3atJFTp055bePo0aPSokULyZo1q+TPn1/69Okj169f9yqzcuVKqVatmkREREipUqVkypQpqXqcAAAg+KVp0rRlyxY5ceKE+7ZkyRKz/IknnjD3vXr1km+++UZmz54tq1atkuPHj0vr1q3df3/jxg2TMF29elXWr18vU6dONQnRoEGD3GUOHz5sytSvX1927NghPXv2lE6dOsmiRYvS4IgBAECwStPLqOTLl8/r8YgRI6RkyZLy8MMPy7lz5+Tzzz+X6dOnS4MGDcz6yZMnS9myZWXjxo1Sq1YtWbx4sezbt0+WLl0qBQoUkCpVqsjQoUOlX79+Eh0dLZkzZ5bx48dLiRIlZNSoUWYb+vdr166V0aNHS9OmTdPkuAEAQPAJmGvPaW3Rv//9b+ndu7dpotu2bZtcu3ZNGjVq5C5TpkwZKVq0qGzYsMEkTXpfsWJFkzDZNBHq2rWr7N27V6pWrWrKeG7DLqM1TgmJjY01N9v58+fNve6P3vzB3o6/tqciwizHzxsoUiIOwYg4uBAHF+JwC7FwIQ7Ji4O/4xUwSdPcuXPl7Nmz8txzz5nHJ0+eNDVFuXLl8iqnCZKus8t4Jkz2envd7cpoInT58mWJjIyMsy/Dhw+XwYMHx1muNVvad8qf7CZJfxj5QOJlFixYIIHIn3EIZsTBhTi4EIdbiIULcUhaHGJiYiQkkyZtimvWrJkULlw4rXdFBgwYYGq8bJpgRUVFSZMmTSRHjhx+eQ7NfvVFb9y4sYSHh/tlmxWiE++ntSc6sJokUyIOwYg4uBAHF+JwC7FwIQ7Ji4PdUhRSSdORI0dMv6Qvv/zSvaxgwYKmyU5rnzxrm3T0nK6zy2zevNlrW/boOs8yviPu9LEmP/HVMikdZac3X/oC+ftk9ec2Y29kcPR8gSglYhuMiIMLcXAhDrcQCxfikLQ4+DtWATFPk3bw1ukCdJSbrXr16uZgly1b5l524MABM8VA7dq1zWO93717t5w+fdpdRjNQTYjKlSvnLuO5DbuMvQ0AAICgSJpu3rxpkqYOHTpIpky3Kr5y5swpHTt2NM1kK1asMB3Dn3/+eZPsaCdwpc1lmhy1a9dOdu7caaYRGDhwoJnbya4p6tKlixw6dEj69u0r33//vYwbN05mzZplpjMAAAAImuY5bZbT2qMXXnghzjqdFiBjxoxmUksdzaaj3jTpsYWFhcm8efPMaDlNprJly2aSryFDhrjL6HQD8+fPN0nSmDFjpEiRIjJx4kSmGwAAAMGVNGltkWXFP1Q+S5YsMnbsWHNLSLFixRIdEVavXj3Zvn37He8rAABIv9K8eQ4AACAYkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAADBkDT9+uuv0rZtW8mTJ49ERkZKxYoVZevWre71lmXJoEGDpFChQmZ9o0aN5ODBg17b+PPPP+XZZ5+VHDlySK5cuaRjx45y8eJFrzK7du2Shx56SLJkySJRUVEycuTIVDtGAAAQ/NI0aTpz5ow8+OCDEh4eLt9++63s27dPRo0aJXfffbe7jCY3H374oYwfP142bdok2bJlk6ZNm8qVK1fcZTRh2rt3ryxZskTmzZsnq1evlhdffNG9/vz589KkSRMpVqyYbNu2Td59912Jjo6WCRMmpPoxAwCA4JQpLZ/8nXfeMbU+kydPdi8rUaKEVy3TBx98IAMHDpSWLVuaZV988YUUKFBA5s6dK0899ZTs379fFi5cKFu2bJEaNWqYMh999JE0b95c3nvvPSlcuLBMmzZNrl69KpMmTZLMmTNL+fLlZceOHfL+++97JVcAAAABWdP09ddfm0TniSeekPz580vVqlXls88+c68/fPiwnDx50jTJ2XLmzCk1a9aUDRs2mMd6r01ydsKktHzGjBlNzZRdpm7duiZhsmlt1YEDB0xtFwAAQEDXNB06dEg++eQT6d27t7z22mumtqhHjx4muenQoYNJmJTWLHnSx/Y6vdeEy1OmTJkkd+7cXmU8a7A8t6nrPJsDVWxsrLl5Nu+pa9eumZs/2Nvx1/ZURJjl+HkDRUrEIRgRBxfi4EIcbiEWLsQheXHwd7zSNGm6efOmqSF6++23zWOtadqzZ4/pv6RJU1oZPny4DB48OM7yxYsXS9asWf36XNoPy19GPpB4mQULFkgg8mccghlxcCEOLsThFmLhQhySFoeYmBgJmaRJR8SVK1fOa1nZsmXlf//7n/l/wYIFzf2pU6dMWZs+rlKlirvM6dOnvbZx/fp1M6LO/nu917/xZD+2y3gaMGCAqf3yrGnSvlfamVxH6PmDZr/6ojdu3Nh0hPeHCtGLEi2zJ7qpBJKUiEMwIg4uxMGFONxCLFyIQ/LiYLcUhUTSpCPntF+Rpx9++MGMclPapKZJzbJly9xJkgZA+yp17drVPK5du7acPXvWjIqrXr26WbZ8+XJTi6V9n+wyr7/+ugm2HWQNeunSpeM0zamIiAhz86V/6++T1Z/bjL2RwdHzBaKUiG0wIg4uxMGFONxCLFyIQ9Li4O9YpWlH8F69esnGjRtN89yPP/4o06dPN9MAdOvWzazPkCGD9OzZU9566y3TaXz37t3Svn17MyKuVatW7pqpRx55RDp37iybN2+WdevWSffu3c3IOi2nnnnmGdNPSudv0qkJZs6cKWPGjPGqTQIAAAjYmqb7779f5syZY5rDhgwZYmqWdIoBnXfJ1rdvX7l06ZKZGkBrlOrUqWOmGNBJKm06pYAmSg0bNjSj5tq0aWPmdvIccaf9kTQZ09qovHnzmgkzmW4AAAAERdKkHn30UXNLiNY2aUKlt4ToSDmtpbqdSpUqyZo1a+5oXwEAQPqV5pdRAQAACAYkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAIGeNEVHR0uGDBm8bmXKlHGvv3LlinTr1k3y5Mkj2bNnlzZt2sipU6e8tnH06FFp0aKFZM2aVfLnzy99+vSR69eve5VZuXKlVKtWTSIiIqRUqVIyZcqUVDtGAAAQGtK8pql8+fJy4sQJ923t2rXudb169ZJvvvlGZs+eLatWrZLjx49L69at3etv3LhhEqarV6/K+vXrZerUqSYhGjRokLvM4cOHTZn69evLjh07pGfPntKpUydZtGhRqh8rAAAIXpnSfAcyZZKCBQvGWX7u3Dn5/PPPZfr06dKgQQOzbPLkyVK2bFnZuHGj1KpVSxYvXiz79u2TpUuXSoECBaRKlSoydOhQ6devn6nFypw5s4wfP15KlCgho0aNMtvQv9fEbPTo0dK0adNUP14AABCc0jxpOnjwoBQuXFiyZMkitWvXluHDh0vRokVl27Ztcu3aNWnUqJG7rDbd6boNGzaYpEnvK1asaBImmyZCXbt2lb1790rVqlVNGc9t2GW0xikhsbGx5mY7f/68udf90Zs/2Nvx1/ZURJjl+HkDRUrEIRgRBxfi4EIcbiEWLsQheXHwd7zSNGmqWbOmaU4rXbq0aZobPHiwPPTQQ7Jnzx45efKkqSnKlSuX199ogqTrlN57Jkz2envd7cpoInT58mWJjIyMs1+auOm++NKaLe075U9Llizx27ZGPpB4mQULFkgg8mccghlxcCEOLsThFmLhQhySFoeYmBgJmaSpWbNm7v9XqlTJJFHFihWTWbNmxZvMpJYBAwZI79693Y81wYqKipImTZpIjhw5/PIcmv3qi964cWMJDw/3yzYrRCfeT2tPdGA1SaZEHIIRcXAhDi7E4RZi4UIckhcHu6UoZJrnPGmt0n333Sc//vijCYh28D579qxXbZOOnrP7QOn95s2bvbZhj67zLOM74k4fa/KTUGKmo+z05ktfIH+frP7cZuyNDI6eLxClRGyDEXFwIQ4uxOEWYuFCHJIWB3/HKs1Hz3m6ePGi/PTTT1KoUCGpXr26Odhly5a51x84cMBMMaB9n5Te7969W06fPu0uoxmoJkTlypVzl/Hchl3G3gYAAEDAJ03//Oc/zVQCP//8s5ky4PHHH5ewsDB5+umnJWfOnNKxY0fTTLZixQrTMfz55583yY52AlfaXKbJUbt27WTnzp1mGoGBAweauZ3smqIuXbrIoUOHpG/fvvL999/LuHHjTPOfTmcAAAAQFM1zv/zyi0mQ/vjjD8mXL5/UqVPHTCeg/1c6LUDGjBnNpJY6mk1HvWnSY9MEa968eWa0nCZT2bJlkw4dOsiQIUPcZXS6gfnz55skacyYMVKkSBGZOHEi0w0AAIDgSZpmzJhx2/U6DcHYsWPNLSHacTyxEWH16tWT7du3J3s/AQAAAqpPEwAAQKAiaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAAZImAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcyCTJdOnSJVm1apUcPXpUrl696rWuR48eyd0sAABA6CRN27dvl+bNm0tMTIxJnnLnzi2///67ZM2aVfLnz0/SBAAAQk6ymud69eoljz32mJw5c0YiIyNl48aNcuTIEalevbq89957/t9LAACAYEyaduzYIa+++qpkzJhRwsLCJDY2VqKiomTkyJHy2muv+X8vAQAAgjFpCg8PNwmT0uY47dekcubMKceOHfPvHgIAAARrn6aqVavKli1b5N5775WHH35YBg0aZPo0/etf/5IKFSr4fy8BAACCsabp7bfflkKFCpn/Dxs2TO6++27p2rWr/PbbbzJhwgR/7yMAAEBw1jTVqFHD/X9tnlu4cKE/9wkAACDgMLklAACAP2uaqlWrJsuWLTNNcdqnKUOGDAmW/e6775xuFgAAILSSppYtW0pERIT5f6tWrVJynwAAAII3aXrzzTfj/T8AAEB6kKw+TTrdwKZNm+Is12Vbt271x34BAAAE/+i5bt26Sd++faVmzZpey3/99Vd555134k2oEBiK95+faJmfR7RIlX0BACDka5r27dtnOob70g7iug4AACDUJCtp0g7hp06dirP8xIkTkilTsiqvAAAAQi9patKkiQwYMEDOnTvnXnb27Flzsd7GjRv7c/8AAAACQrKqhd577z2pW7euFCtWzDTJqR07dkiBAgXM9ecAAABCTbKSpnvuuUd27dol06ZNk507d0pkZKQ8//zz8vTTT0t4eLj/9xIAACCNJbsDUrZs2eTFF1/0794AAACE2rXnDh48KBMmTJC33npLhgwZ4nVLjhEjRphLs/Ts2dO97MqVK2Z6gzx58kj27NmlTZs2cTqgHz16VFq0aCFZs2Y1Fw/u06ePXL9+3avMypUrzWg/7cBeqlQpmTJlSjKPGgAApFfJqmn67LPPpGvXrpI3b14pWLCg13Xo9P+DBg1K8mSZn376qVSqVMlrea9evWT+/Pkye/ZsyZkzp3Tv3l1at24t69atM+tv3LhhEibdh/Xr15vRe+3btzdNhG+//bYpc/jwYVOmS5cupjlRr5/XqVMnKVSokDRt2jQ5hw8AANKhZCVNWrs0bNgw6dev3x3vwMWLF+XZZ581iZhu16Yj8z7//HOZPn26NGjQwCybPHmylC1bVjZu3Ci1atWSxYsXm3mhli5dajqhV6lSRYYOHWr2Kzo6WjJnzizjx4+XEiVKyKhRo8w29O/Xrl0ro0ePJmkCAAApmzSdOXNGnnjiCfEHbX7TmqBGjRp5JU3btm2Ta9eumeW2MmXKSNGiRWXDhg0madL7ihUrmoTJpomQ1oLt3bvXjOzTMp7bsMt4NgP6io2NNTfb+fPnzb3uj978wd6Ov7anIsIsv2zHn/vk9LlS8zkDEXFwIQ4uxOEWYuFCHJIXB3/HK1lJkyZMWsujTV53YsaMGfLdd9+Z5jlfJ0+eNDVFuXLl8lquCZKus8t4Jkz2envd7cpoInT58mUz8s/X8OHDZfDgwXGW6zFr3yl/WrJkid+2NfIB/2xnwYIFktr8GYdgRhxciIMLcbiFWLgQh6TFISYmRtI8adLO1G+88YZpJtOaHt9pBnr06JHoNo4dOyavvPKKOfAsWbJIINGJO3v37u1+rAlWVFSUmdQzR44cfnkOzX712HUyUH9N01AhepFftrMnOvWaLVMiDsGIOLgQBxficAuxcCEOyYuD3VKUpkmTjprT0WyrVq0yN0/aEdxJ0qTNb6dPn/a6hp127F69erV8/PHHsmjRIrl69aqZadyztklHz2nHb6X3mzdv9tquPbrOs4zviDt9rMlPfLVMSkfZ6c2XvkD+Pln9uc3YG7c65N+JtHhDpkRsgxFxcCEOLsThFmLhQhySFgd/xypZSZOOSLtTDRs2lN27d3st0wkytd+SduTWmh09WB3tplMNqAMHDpgpBmrXrm0e6712SNfkS6cbUJqBakJUrlw5dxnf5iYtY28DAADAiTu6uq7WBGkCVbJkySRfqPeuu+6SChUqxJkwU+dkspd37NjRNJPlzp3bJEIvv/yySXa0E7jS5jJNjtq1aycjR440/ZcGDhxoOpfbNUXa70prrvr27SsvvPCCLF++XGbNmmWmMgAAAEjRyS21Y5UmNNopunz58qb2R2lSo5NU+otOC/Doo4+amia91p02tX355Zfu9WFhYTJv3jxzr8lU27ZtzTxNnhNs6nQDmiBp7VLlypXN1AMTJ05kugEAAJDyNU3aUVqvOaczbT/yyCPu5Tq0X+dH6t+/f3I2a7bnSTuIjx071twSohcNTmy0V7169WT79u3J2icAAIBkJ01z586VmTNnmmYyz9nAtdbpp59+IrIAACDkJKt57rfffnN3vPZ06dIlryQKAAAgXSdNNWrU8OpIbSdK2leIUWkAACAUJat5Ti+G26xZM3Pdt+vXr8uYMWPM//Wiub7zNgEAAKTbmqY6derIjh07TMKkM4Lr5UW0uU6v81a9enX/7yUAAECwztOkczN99tln/t0bAACAUEqa7HmZElK0aNHk7g8AAEDoJE3Fixe/7Sg5vYYcAACApPekyXeiSL3qsC57//33zbXgAAAAQk2ykia9HEl80xAULlxY3n33XWndurU/9g0AACC4R88lpHTp0rJlyxZ/bhIAACB4a5rOnz/v9diyLDlx4oS57ty9997rr30DAAAI7qQpV65ccTqCa+IUFRUlM2bM8Ne+AQAABHfStHz5cq+kKWPGjJIvXz4pVaqUZMqU7KmfAAAAAlayMpx69er5f08AAABCrSP48OHDZdKkSXGW67J33nnHH/sFAAAQ/EnTp59+KmXKlImzvHz58jJ+/Hh/7BcAAEDwJ00nT56UQoUKxVmu/Zp0FB0AAECoSVbSpKPk1q1bF2e5LtMJLgEAAEJNsjqCd+7cWXr27Gkun9KgQQOzbNmyZdK3b1959dVX/b2PAAAAwZk09enTR/744w956aWX5OrVq2ZZlixZpF+/fjJgwAB/7yMAAEBwJk06R5OOknvjjTdk//79EhkZaWYCj4iI8P8eAgAABPu157RD+J9//iklS5Y0CZPOCg4AABCKkpU0adNcw4YN5b777pPmzZu7R8x17NiRPk0AACAkJStp6tWrl4SHh8vRo0cla9as7uVPPvmkLFy40J/7BwAAELx9mhYvXiyLFi2SIkWKeC3Xfk1Hjhzx174BAAAEd03TpUuXvGqYbNq/ic7gAAAgFCUraXrooYfkiy++8BpNd/PmTRk5cqTUr1/fn/sHAAAQvM1zmhxpR/CtW7eaeZp0Usu9e/eamqb4ZgoHAABIlzVNFSpUkB9++EHq1KkjLVu2NM11rVu3lu3bt5vpBwAAACS91zTppVMeeeQRGT9+vLz++usps1cAAADBXtOkUw3s2rUrZfYGAAAglJrn2rZtK59//rn/9wYAACCUOoJfv35dJk2aJEuXLpXq1atLtmzZvNa///77/to/AACA4EuaDh06JMWLF5c9e/ZItWrVzDLtEO5Jpx8AAABI10mTzvit15lbsWKF+7IpH374oRQoUCCl9g8AACD4+jRZluX1+NtvvzXTDQAAAIS6ZHUETyiJSqpPPvlEKlWqJDly5DC32rVrm0TMduXKFenWrZvkyZNHsmfPLm3atJFTp055bUMvGtyiRQtzWZf8+fNLnz59TJ8rTytXrjTNiXqJl1KlSsmUKVPuaL8BAED6k6SkSfsr+fZZupM+THrB3xEjRsi2bdvM7OINGjQwk2Xq7OKqV69e8s0338js2bNl1apVcvz4cTOJpu3GjRsmYdJZydevXy9Tp041CdGgQYPcZQ4fPmzK6OVdduzYIT179pROnTqZCw4DAACkSJ8mrVl67rnn3Bfl1ZqgLl26xBk99+WXXzra3mOPPeb1eNiwYab2aePGjSah0mkNpk+fbpIpNXnyZClbtqxZX6tWLVm8eLHs27fPjOLTflVVqlSRoUOHSr9+/SQ6OloyZ85sJuEsUaKEjBo1ymxD/37t2rUyevRoadq0aVIOHwAApGNJqmnq0KGDaQLLmTOnuel8TYULF3Y/tm/JobVGM2bMMH2ktJlOa5909vFGjRq5y5QpU0aKFi0qGzZsMI/1vmLFil4d0TUROn/+vLu2Sst4bsMuY28DAADA7zVNWtPjb7t37zZJktZaab+lOXPmSLly5UxTmtYU5cqVy6u8JkgnT540/9d735F79uPEymhidfnyZYmMjIyzT7GxseZm07JKkzi9+YO9HX9tT0WE3VkfM5s/98npc6XmcwYi4uBCHFyIwy3EwoU4JC8O/o5Xsia39KfSpUubBOncuXPy3//+19Rmaf+ltDR8+HAZPHhwnOXaHKgdzv1pyZIlftvWyAf8s50FCxZIavNnHIIZcXAhDi7E4RZi4UIckhaHmJgYCamkSWuTdESb0tnFt2zZImPGjDFzQGkH77Nnz3rVNunouYIFC5r/6/3mzZu9tmePrvMs4zviTh/raL34apnUgAEDpHfv3l41TVFRUdKkSRPzd/6g2a++6I0bNzbX8/OHCtH+6dy+Jzr1+nqlRByCEXFwIQ4uxOEWYuFCHJIXB7ulKGSSJl83b940TWOaQGlAli1bZqYaUAcOHDBTDGhzntJ77Tx++vRp09dKaTA1sdEmPruMb82JlrG3ER/t6G53dvek++Pvk9Wf24y94Z/Z2NPiDZkSsQ1GxMGFOLgQh1uIhQtxSFoc/B2rNE2atEanWbNmpnP3hQsXzEg5nVNJpwPQDuUdO3Y0NT65c+c2idDLL79skh0dOae05keTo3bt2snIkSNN/6WBAweauZ3spEdH93388cfSt29feeGFF2T58uUya9YsmT9/floeOgAACDJpmjRpDVH79u3NpVk0SdKJLjVh0mo3pdMCZMyY0dQ0ae2TjnobN26c++/DwsJk3rx50rVrV5NM6dQH2idqyJAh7jI63YAmSDrnkzb76VQGEydOZLoBAAAQPEmTzsN0O1myZJGxY8eaW0KKFSuWaMflevXqyfbt25O9nwAAAHd0GRUAAID0gqQJAADAAZImAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAgUxOCiF9Kd5/fqJlfh7RIlX2BQCAQEFNEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOMC150LoenAAACDlUNMEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAACBnjQNHz5c7r//frnrrrskf/780qpVKzlw4IBXmStXrki3bt0kT548kj17dmnTpo2cOnXKq8zRo0elRYsWkjVrVrOdPn36yPXr173KrFy5UqpVqyYRERFSqlQpmTJlSqocIwAACA1pmjStWrXKJEQbN26UJUuWyLVr16RJkyZy6dIld5levXrJN998I7Nnzzbljx8/Lq1bt3avv3HjhkmYrl69KuvXr5epU6eahGjQoEHuMocPHzZl6tevLzt27JCePXtKp06dZNGiRal+zAAAIDhlSssnX7hwoddjTXa0pmjbtm1St25dOXfunHz++ecyffp0adCggSkzefJkKVu2rEm0atWqJYsXL5Z9+/bJ0qVLpUCBAlKlShUZOnSo9OvXT6KjoyVz5swyfvx4KVGihIwaNcpsQ/9+7dq1Mnr0aGnatGmaHDsAAAguaZo0+dIkSeXOndvca/KktU+NGjVylylTpowULVpUNmzYYJImva9YsaJJmGyaCHXt2lX27t0rVatWNWU8t2GX0Rqn+MTGxpqb7fz58+Ze90Vv/mBvx+n2IsIsCSRpFYdQRRxciIMLcbiFWLgQh+TFwd/xCpik6ebNmyaJefDBB6VChQpm2cmTJ01NUa5cubzKaoKk6+wyngmTvd5ed7symgxdvnxZIiMj4/S1Gjx4cJx91Fot7TflT9os6cTIBySgLFiwIE3iEOqIgwtxcCEOtxALF+KQtDjExMRISCZN2rdpz549ptksrQ0YMEB69+7tfqzJVVRUlOlvlSNHDr88h2a/+qI3btxYwsPDEy1fITqw+l/tiW6aJnEIVcTBhTi4EIdbiIULcUheHOyWopBKmrp37y7z5s2T1atXS5EiRdzLCxYsaDp4nz171qu2SUfP6Tq7zObNm722Z4+u8yzjO+JOH2sC5FvLpHSEnd586Qvk75PV6TZjb2SQQJJWcQh1xMGFOLgQh1uIhQtxSFoc/B2rNB09Z1mWSZjmzJkjy5cvN521PVWvXt0c8LJly9zLdEoCnWKgdu3a5rHe7969W06fPu0uo1moJkTlypVzl/Hchl3G3gYAAEBA1zRpk5yOjPvqq6/MXE12H6ScOXOaGiC979ixo2kq087hmgi9/PLLJtnRTuBKm8w0OWrXrp2MHDnSbGPgwIFm23ZtUZcuXeTjjz+Wvn37ygsvvGAStFmzZsn8+fPT8vABAEAQSdOapk8++cSMmKtXr54UKlTIfZs5c6a7jE4L8Oijj5pJLXUaAm1q+/LLL93rw8LCTNOe3msy1bZtW2nfvr0MGTLEXUZrsDRB0tqlypUrm6kHJk6cyHQDAAAgOGqatHkuMVmyZJGxY8eaW0KKFSuW6GguTcy2b9+erP0EAADg2nMAAAAOkDQBAAA4QNIEAADgAEkTAABAsExuieBTvH/i0zX8PKJFquwLAACpgZomAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAAZImAAAAB0iaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHMjkpBCRH8f7zEy1zcGiTVNkXAADuFDVNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOkDQBAAAEetK0evVqeeyxx6Rw4cKSIUMGmTt3rtd6y7Jk0KBBUqhQIYmMjJRGjRrJwYMHvcr8+eef8uyzz0qOHDkkV65c0rFjR7l48aJXmV27dslDDz0kWbJkkaioKBk5cmSqHB8AAAgdaZo0Xbp0SSpXrixjx46Nd70mNx9++KGMHz9eNm3aJNmyZZOmTZvKlStX3GU0Ydq7d68sWbJE5s2bZxKxF1980b3+/Pnz0qRJEylWrJhs27ZN3n33XYmOjpYJEyakyjECAIDQkKYX7G3WrJm5xUdrmT744AMZOHCgtGzZ0iz74osvpECBAqZG6qmnnpL9+/fLwoULZcuWLVKjRg1T5qOPPpLmzZvLe++9Z2qwpk2bJlevXpVJkyZJ5syZpXz58rJjxw55//33vZIrAACAgE2abufw4cNy8uRJ0yRny5kzp9SsWVM2bNhgkia91yY5O2FSWj5jxoymZurxxx83ZerWrWsSJpvWVr3zzjty5swZufvuu+M8d2xsrLl51lapa9eumZs/2Ntxur2IMEtCUVLjEKqIgwtxcCEOtxALF+KQvDj4O14BmzRpwqS0ZsmTPrbX6X3+/Pm91mfKlEly587tVaZEiRJxtmGviy9pGj58uAwePDjO8sWLF0vWrFnFn7RZ0YmRD0hIso/faRxCHXFwIQ4uxOEWYuFCHJIWh5iYGEkXSVNaGjBggPTu3durpkk7kGvfKO1w7g+a/eqL3rhxY6k6bLmkV9tfb+COQ3h4uKRXnucDcSAOxOEWYuFCHJIXB7ulKOSTpoIFC5r7U6dOmdFzNn1cpUoVd5nTp097/d3169fNiDr77/Ve/8aT/dgu4ysiIsLcfOkL5O+TVbcXeyODpFeaMGotmt4nFIefR7SQ9CIlzrFgRBxciMMtxMKFOCQtDv6OVcDO06RNaprULFu2zCtj1L5KtWvXNo/1/uzZs2ZUnG358uVy8+ZN0/fJLqMj6jzbNTVLLV26dLxNcwAAAAGXNOl8SjqSTW9252/9/9GjR828TT179pS33npLvv76a9m9e7e0b9/ejIhr1aqVKV+2bFl55JFHpHPnzrJ582ZZt26ddO/e3XQS13LqmWeeMZ3Adf4mnZpg5syZMmbMGK/mNwAAgIBuntu6davUr1/f/dhOZDp06CBTpkyRvn37mrmcdGoArVGqU6eOmWJAJ6m06ZQCmig1bNjQjJpr06aNmdvJc8SdduDu1q2bVK9eXfLmzWsmzGS6AQAAEDRJU7169cx8TAnR2qYhQ4aYW0J0pNz06dNv+zyVKlWSNWvW3NG+AgCA9C1g+zQBAAAEEpImAAAAB0iaAAAAHCBpAgAACObJLQFb8f7zEy2TnibABACkDWqaAAAAHCBpAgAAcICkCQAAwAGSJgAAAAdImgAAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgMuoICRwqRUAQEqjpgkAAMABkiYAAAAHSJoAAAAcoE8T0g36PQEA7gQ1TQAAAA6QNAEAADhA0gQAAOAASRMAAIADJE0AAAAOMHoO8MAIOwBAQqhpAgAAcICaJiCJqI0CgPSJmiYAAAAHSJoAAAAcIGkCAABwgKQJAADAATqCAymAzuIAEHpImoAASKwiwiwZ+YBIhehFEnsjg3s5iRUABA6SJiCAUWMFAIGDPk0AAAAOUNMEBDlqowAgdaSrpGns2LHy7rvvysmTJ6Vy5cry0UcfyQMPPJDWuwWkOBIrALhz6SZpmjlzpvTu3VvGjx8vNWvWlA8++ECaNm0qBw4ckPz586f17gFBkVj5CwkagGCUbpKm999/Xzp37izPP/+8eazJ0/z582XSpEnSv3//tN49IF1JKEHzHEV4YNijqb5fACDpvSP41atXZdu2bdKoUSP3sowZM5rHGzZsSNN9AwAAwSFd1DT9/vvvcuPGDSlQoIDXcn38/fffxykfGxtrbrZz586Z+z///FOuXbvml33S7cTExMgff/whma5fkvQq001LYmJuSqZrGeXGzVvzE6U3xCFuHEr9c1ai5TcNaCihyPPzITw8XNIzYuFCHJIXhwsXLph7y7LEH9JF0pRUw4cPl8GDB8dZXqJEiTTZn1D3TFrvQIAgDkmPQ95RKbgjAELGhQsXJGfOnHe8nXSRNOXNm1fCwsLk1KlTXsv1ccGCBeOUHzBggOk0brt586apZcqTJ49kyOCfWoDz589LVFSUHDt2THLkyCHpFXFwIQ4uxMGFONxCLFyIQ/LioDVMmjAVLlxY/CFdJE2ZM2eW6tWry7Jly6RVq1buREgfd+/ePU75iIgIc/OUK1euFNk3fdHT8xvARhxciIMLcXAhDrcQCxfikPQ4+KOGKV0lTUprjjp06CA1atQwczPplAOXLl1yj6YDAAC4nXSTND355JPy22+/yaBBg8zkllWqVJGFCxfG6RwOAACQrpMmpU1x8TXHpQVt/nvzzTfjNAOmN8TBhTi4EAcX4nALsXAhDoERhwyWv8bhAQAAhLB0MbklAADAnSJpAgAAcICkCQAAwAGSJgAAAAdImtLI2LFjpXjx4pIlSxapWbOmbN68WYL5sjP333+/3HXXXZI/f34zgeiBAwe8yly5ckW6detmZlXPnj27tGnTJs4M7UePHpUWLVpI1qxZzXb69Okj169f9yqzcuVKqVatmhk5UapUKZkyZYoEqhEjRpgZ5Hv27Jnu4vDrr79K27ZtzXFGRkZKxYoVZevWre71Ov5Ep/8oVKiQWa8Xzz548KDXNnQW/meffdZMYKeTy3bs2FEuXrzoVWbXrl3y0EMPmfeRzhI8cuRICRR6vcs33njDXH5Jj7FkyZIydOhQr2tghWIcVq9eLY899piZgVnP/7lz53qtT81jnj17tpQpU8aU0XNwwYIFEghx0Oun9evXz+xTtmzZTJn27dvL8ePH01UcfHXp0sWU0XkUAzYOOnoOqWvGjBlW5syZrUmTJll79+61OnfubOXKlcs6deqUFYyaNm1qTZ482dqzZ4+1Y8cOq3nz5lbRokWtixcvust06dLFioqKspYtW2Zt3brVqlWrlvXXv/7Vvf769etWhQoVrEaNGlnbt2+3FixYYOXNm9caMGCAu8yhQ4esrFmzWr1797b27dtnffTRR1ZYWJi1cOFCK9Bs3rzZKl68uFWpUiXrlVdeSVdx+PPPP61ixYpZzz33nLVp0yazv4sWLbJ+/PFHd5kRI0ZYOXPmtObOnWvt3LnT+tvf/maVKFHCunz5srvMI488YlWuXNnauHGjtWbNGqtUqVLW008/7V5/7tw5q0CBAtazzz5rzr3//Oc/VmRkpPXpp59agWDYsGFWnjx5rHnz5lmHDx+2Zs+ebWXPnt0aM2ZMSMdBz9nXX3/d+vLLLzU7tObMmeO1PrWOed26deZ9MXLkSPM+GThwoBUeHm7t3r07zeNw9uxZ8x6fOXOm9f3331sbNmywHnjgAat69epe2wj1OHjS9XqshQsXtkaPHh2wcSBpSgP65ujWrZv78Y0bN8yJMnz4cCsUnD592rw5Vq1a5f6A0JNTvzRs+/fvN2X0w8J+Y2XMmNE6efKku8wnn3xi5ciRw4qNjTWP+/bta5UvX97ruZ588kmTtAWSCxcuWPfee6+1ZMkS6+GHH3YnTeklDv369bPq1KmT4PqbN29aBQsWtN599133Mo1NRESE+bBT+qGmcdmyZYu7zLfffmtlyJDB+vXXX83jcePGWXfffbc7LvZzly5d2goELVq0sF544QWvZa1btzYf7OklDr5fkql5zH//+9/Na+CpZs2a1j/+8Q8rtd0uWfD8oaXljhw5ku7i8Msvv1j33HOPSXj0B5dn0hRocaB5LpVdvXpVtm3bZqqkbRkzZjSPN2zYIKHg3Llz5j537tzmXo9Xq6M9j1mrSIsWLeo+Zr3X6lLPGdqbNm1qLs64d+9edxnPbdhlAi1u2vymzWu++5pe4vD111+byxU98cQTpnmxatWq8tlnn7nXHz582MzK73kMem0obab2jINWw+t2bFpe3yubNm1yl6lbt665tqRnHLRp+MyZM5LW/vrXv5rrW/7www/m8c6dO2Xt2rXSrFmzdBUHT6l5zIH+Ponvc1ObpuzrnKaXONy8eVPatWtnuiGUL18+zvpAiwNJUyr7/fffTV8H38u36GP9MAl2+gbQPjwPPvigVKhQwSzT49KT2feix57HrPfxxcRed7symlBcvnxZAsGMGTPku+++M/28fKWXOBw6dEg++eQTuffee2XRokXStWtX6dGjh0ydOtXrOG73HtB7Tbg8ZcqUySTiSYlVWurfv7889dRTJjEODw83yaO+N7RvRnqKg6fUPOaEygRaTOy+jtrH6emnn3ZfhDa9xOGdd94xx6WfEfEJtDikq8uoIHVqWfbs2WN+Uac3x44dk1deeUWWLFliOhqmV5o466/Ct99+2zzWZEHPifHjx5uLZqcXs2bNkmnTpsn06dPNL+gdO3aYpEk7xKanOOD2tPb573//u+kgrz820pNt27bJmDFjzA9NrWULBtQ0pbK8efNKWFhYnBFT+rhgwYISzPS6fvPmzZMVK1ZIkSJF3Mv1uLRZ8uzZswkes97HFxN73e3K6C8zHYUTCB8Ap0+fNqPa9JeQ3latWiUffvih+b/+qkkPcdBRUeXKlfNaVrZsWTMq0PM4bvce0HuNpScdQaijaJISq7SkzQ12bZM2uWoTRK9evdy1kOklDp5S85gTKhNIMbETpiNHjpgfW3YtU3qJw5o1a8wxahcF+zNTY/Hqq6+a0eWBGAeSplSmzTPVq1c3fR08f5nr49q1a0sw0l9ImjDNmTNHli9fboZYe9Lj1eYJz2PWtmb9ErWPWe93797t9eawP0TsL2At47kNu0ygxK1hw4bmGLRGwb5pjYs2x9j/Tw9x0KZZ3ykntF9PsWLFzP/1/NAPKs9j0KZF7Z/gGQdNLjURtem5pe8V7f9il9HhzPrF4xmH0qVLy9133y1pLSYmxvS78KQ/mPQY0lMcPKXmMQf6+8ROmHS6haVLl5rpOTylhzi0a9fOTBXg+ZmpNbH6g0Ob9gMyDknqNg6/TTmgo0WmTJliRga8+OKLZsoBzxFTwaRr165mCPHKlSutEydOuG8xMTFeQ+11GoLly5ebofa1a9c2N9+h9k2aNDHTFujw+Xz58sU71L5Pnz5m1NnYsWMDaqh9fDxHz6WXOOgooEyZMpkh9wcPHrSmTZtm9vff//6317BzPee/+uora9euXVbLli3jHXZetWpVM23B2rVrzYhEz2HGOupKhxm3a9fOjLrR95U+T6BMOdChQwczIsieckCHVOv0ETr6MZTjoKNHdboMvelXzPvvv2/+b48KS61j1iHmeh6+99575n3y5ptvpupQ+9vF4erVq2aqhSJFipj3uefnpucIsFCPQ3x8R88FWhxImtKIzq2jX546X5NOQaDzTwQrfSPEd9O5m2z6gfjSSy+ZYaF6Mj/++OPmA8LTzz//bDVr1szMr6FfLq+++qp17do1rzIrVqywqlSpYuL2l7/8xes5giFpSi9x+Oabb0zypz8OypQpY02YMMFrvQ49f+ONN8wHnZZp2LChdeDAAa8yf/zxh/lg1LmNdMqF559/3nwAe9J5fnR6A92GJij6hRwozp8/b157fZ9nyZLFvE46X43nl2IoxkHPzfg+DzSJTO1jnjVrlnXfffeZ94lO0zF//nwrEOKgSXRCn5v6d+klDk6TpkCKQwb9506q1wAAANID+jQBAAA4QNIEAADgAEkTAACAAyRNAAAADpA0AQAAOEDSBAAA4ABJEwAAgAMkTQDg4eeffzYXD9VLOqQE3fbcuXNTZNsAUhZJE4CA8txzz0mrVq3S7PmjoqLkxIkTUqFCBfN45cqVJtHxvdAygPQnU1rvAAAEEr2obiBcAR5A4KGmCUDQWLVqlTzwwAMSEREhhQoVkv79+8v169fd6+vVqyc9evSQvn37Su7cuU3yEx0d7bWN77//XurUqSNZsmSRcuXKmSvMezaZeTbP6f/r169vluvV0nW51oSp4sWLywcffOC17SpVqng9n17Bvm7duu7n0quqAwhe1DQBCAq//vqrNG/e3CQtX3zxhUl+OnfubBISz0Rl6tSp0rt3b9m0aZNs2LDBlH/wwQelcePGcuPGDdP0V7RoUbP+woUL8uqrr962qe5///uftGnTRg4cOCA5cuSQyMhIR/t78+ZNad26tRQoUMA817lz56Rnz55+iQWAtEHSBCAojBs3ziQxH3/8sanxKVOmjBw/flz69esngwYNkowZXRXnlSpVkjfffNP8/9577zXlly1bZpImren56aefTD8luwlu2LBhZl1CTXVaY6Xy588vuXLlcry/WoOlid2iRYukcOHCZtnbb78tzZo1u+NYAEgbNM8BCAr79++X2rVrm4TJpjVIFy9elF9++cW9TJMmT9qMd/r0afN/rS3SxMuzz5I296XU/upz2QmT0v0HELxImgCElPDwcK/HmmRpU5m/ac2WZVley65du+b35wEQOEiaAASFsmXLmj5KnonKunXr5K677pIiRYo42kbp0qXl2LFjcurUKfeyLVu23PZvMmfObO61P5SnfPnymakJbOfPn5fDhw977a8+l2eZjRs3OtpPAIGJpAlAwNFO0zp6zfP24osvmiTk5ZdfNn2FvvrqK9N3STt92/2ZEqN9l0qWLCkdOnSQXbt2maRr4MCBZp1ns5+nYsWKmXXz5s2T3377zTQHqgYNGsi//vUvWbNmjezevdtsU/tA2Ro1aiT33XefWb5z505T7vXXX/dLfACkDZImAAFHO2pXrVrV6zZ06FBZsGCBbN68WSpXrixdunSRjh07upMeJzSp0akFNPG5//77pVOnTu5ERkfhxeeee+6RwYMHm+kNdCRc9+7dzfIBAwbIww8/LI8++qi0aNHCjMrThMymidycOXPk8uXLpt+UPpd2OgcQvDJYvo3yAJCOaG2Tztv0448/eiU9AOCLpAlAuqK1P9mzZzfTEWii9Morr5iJK9euXZvWuwYgwDFPE4B0RSe01Lmdjh49Knnz5jV9j0aNGpXWuwUgCFDTBAAA4AAdwQEAABwgaQIAAHCApAkAAMABkiYAAAAHSJoAAAAcIGkCAABwgKQJAADAAZImAAAAB0iaAAAAJHH/D4JDW4LgRWJ/AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>palabra</th>\n",
       "      <th>conteo</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>the</td>\n",
       "      <td>336749</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>and</td>\n",
       "      <td>164140</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>a</td>\n",
       "      <td>163123</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>of</td>\n",
       "      <td>145864</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>to</td>\n",
       "      <td>135724</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>is</td>\n",
       "      <td>107332</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>br</td>\n",
       "      <td>101871</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>it</td>\n",
       "      <td>96467</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>in</td>\n",
       "      <td>93976</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>i</td>\n",
       "      <td>87690</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>this</td>\n",
       "      <td>76007</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>that</td>\n",
       "      <td>73286</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>s</td>\n",
       "      <td>63602</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>was</td>\n",
       "      <td>48209</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>as</td>\n",
       "      <td>46935</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>for</td>\n",
       "      <td>44345</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>with</td>\n",
       "      <td>44130</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>movie</td>\n",
       "      <td>44047</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>but</td>\n",
       "      <td>42623</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>film</td>\n",
       "      <td>40159</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   palabra  conteo\n",
       "0      the  336749\n",
       "1      and  164140\n",
       "2        a  163123\n",
       "3       of  145864\n",
       "4       to  135724\n",
       "5       is  107332\n",
       "6       br  101871\n",
       "7       it   96467\n",
       "8       in   93976\n",
       "9        i   87690\n",
       "10    this   76007\n",
       "11    that   73286\n",
       "12       s   63602\n",
       "13     was   48209\n",
       "14      as   46935\n",
       "15     for   44345\n",
       "16    with   44130\n",
       "17   movie   44047\n",
       "18     but   42623\n",
       "19    film   40159"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# ---------------------------------------------\n",
    "# CELDA 1: IMPORTACIONES Y CARGA DE DATOS (EDA)\n",
    "# ---------------------------------------------\n",
    "\n",
    "# 1) Librerías de datos y visualización\n",
    "from datasets import load_dataset\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "from collections import Counter\n",
    "import re\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")   # Ocultar warnings no críticos\n",
    "\n",
    "# 2) Carga del dataset IMDb\n",
    "ds = load_dataset(\"imdb\")           # Descarga y cachea automáticamente\n",
    "train = ds[\"train\"].to_pandas()     # Partición de entrenamiento\n",
    "test  = ds[\"test\"].to_pandas()      # Partición de prueba\n",
    "\n",
    "# 3) Vistazo rápido a los datos\n",
    "print(f\"Train set: {train.shape[0]} ejemplos\")\n",
    "print(f\"Test  set: {test.shape[0]} ejemplos\\n\")\n",
    "display(train.head())\n",
    "\n",
    "# 4) Distribución de clases\n",
    "train[\"label\"].value_counts().plot.bar()\n",
    "plt.title(\"Distribución de etiquetas (0=negativo, 1=positivo)\")\n",
    "plt.xlabel(\"Etiqueta\")\n",
    "plt.ylabel(\"Conteo\")\n",
    "plt.show()\n",
    "\n",
    "# 5) Análisis de longitud de reseñas\n",
    "train[\"length\"] = train[\"text\"].str.len()\n",
    "display(train[\"length\"].describe())  # Media, percentiles, etc.\n",
    "train[\"length\"].hist(bins=50)\n",
    "plt.title(\"Longitud de reseñas (nº caracteres)\")\n",
    "plt.xlabel(\"Longitud\")\n",
    "plt.ylabel(\"Frecuencia\")\n",
    "plt.show()\n",
    "\n",
    "# 6) Top 20 palabras más frecuentes\n",
    "all_words = Counter()\n",
    "for t in train[\"text\"]:\n",
    "    tokens = re.findall(r\"\\w+\", t.lower())  # Solo palabras\n",
    "    all_words.update(tokens)\n",
    "most_common = all_words.most_common(20)\n",
    "display(pd.DataFrame(most_common, columns=[\"palabra\",\"conteo\"]))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "a6b2c3ea-1bce-4c70-a41e-5ea2ab43e641",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tokenizer cargado: BertTokenizerFast\n",
      "Batches de entrenamiento: 1563\n",
      "Batches de validación:   1563\n",
      "\n",
      "Tamaños del batch de entrenamiento:\n",
      "  input_ids      torch.Size([16, 128])\n",
      "  attention_mask torch.Size([16, 128])\n",
      "  labels         torch.Size([16])\n"
     ]
    }
   ],
   "source": [
    "# -------------------------------------------------------------\n",
    "# CELDA 2: TOKENIZACIÓN Y CREACIÓN DE DATASETS & DATALOADERS\n",
    "# -------------------------------------------------------------\n",
    "\n",
    "# 1) Importaciones necesarias\n",
    "from transformers import AutoTokenizer\n",
    "import torch\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "\n",
    "# 2) Cargar tokenizer BERT\n",
    "#    - \"bert-base-uncased\" es un modelo preentrenado en inglés\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
    "print(\"Tokenizer cargado:\", tokenizer.__class__.__name__)\n",
    "\n",
    "# 3) Definir clase Dataset para IMDb\n",
    "class IMDbDataset(Dataset):\n",
    "    def __init__(self, texts, labels, tokenizer, max_len=128):\n",
    "        self.texts = texts\n",
    "        self.labels = labels\n",
    "        self.tokenizer = tokenizer\n",
    "        self.max_len = max_len\n",
    "\n",
    "    def __len__(self):\n",
    "        return len(self.texts)\n",
    "\n",
    "    def __getitem__(self, idx):\n",
    "        text = str(self.texts[idx])\n",
    "        label = int(self.labels[idx])\n",
    "        # Tokenización y padding/truncation\n",
    "        enc = self.tokenizer(\n",
    "            text,\n",
    "            add_special_tokens=True,      # Añade [CLS] y [SEP]\n",
    "            max_length=self.max_len,      # Longitud fija\n",
    "            truncation=True,              # Trunca si es muy largo\n",
    "            padding=\"max_length\",         # Rellena si es muy corto\n",
    "            return_attention_mask=True,   # Máscara de atención\n",
    "            return_tensors=\"pt\"           # Tensores PyTorch\n",
    "        )\n",
    "        return {\n",
    "            \"input_ids\":      enc[\"input_ids\"].squeeze(),      # Tensor [max_len]\n",
    "            \"attention_mask\": enc[\"attention_mask\"].squeeze(), # Tensor [max_len]\n",
    "            \"labels\":         torch.tensor(label, dtype=torch.long)\n",
    "        }\n",
    "\n",
    "# 4) Instanciar los datasets de entrenamiento y prueba\n",
    "train_dataset = IMDbDataset(\n",
    "    texts=train[\"text\"].tolist(),\n",
    "    labels=train[\"label\"].tolist(),\n",
    "    tokenizer=tokenizer,\n",
    "    max_len=128\n",
    ")\n",
    "test_dataset = IMDbDataset(\n",
    "    texts=test[\"text\"].tolist(),\n",
    "    labels=test[\"label\"].tolist(),\n",
    "    tokenizer=tokenizer,\n",
    "    max_len=128\n",
    ")\n",
    "\n",
    "# 5) Crear DataLoaders para batching\n",
    "train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)\n",
    "test_loader  = DataLoader(test_dataset,  batch_size=16, shuffle=False)\n",
    "\n",
    "# 6) Verificar número de batches y un batch de ejemplo\n",
    "print(f\"Batches de entrenamiento: {len(train_loader)}\")\n",
    "print(f\"Batches de validación:   {len(test_loader)}\\n\")\n",
    "\n",
    "# Obtener y mostrar dimensiones de un batch\n",
    "batch = next(iter(train_loader))\n",
    "print(\"Tamaños del batch de entrenamiento:\")\n",
    "print(\"  input_ids     \", batch[\"input_ids\"].shape)\n",
    "print(\"  attention_mask\", batch[\"attention_mask\"].shape)\n",
    "print(\"  labels        \", batch[\"labels\"].shape)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "377d78c7-1ee2-4059-bf7f-f441c837426e",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✔ TrainingArguments configurados\n",
      "✔ Trainer instanciado\n",
      "\n",
      "→ Entrenamiento en curso… puede tardar varios minutos:\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='4689' max='4689' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [4689/4689 16:50:50, Epoch 3/3]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Step</th>\n",
       "      <th>Training Loss</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>100</td>\n",
       "      <td>0.516200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>200</td>\n",
       "      <td>0.412300</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>300</td>\n",
       "      <td>0.410600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>400</td>\n",
       "      <td>0.361900</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>500</td>\n",
       "      <td>0.372400</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>600</td>\n",
       "      <td>0.358200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>700</td>\n",
       "      <td>0.351000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>800</td>\n",
       "      <td>0.351700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>900</td>\n",
       "      <td>0.319700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1000</td>\n",
       "      <td>0.345700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1100</td>\n",
       "      <td>0.315200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1200</td>\n",
       "      <td>0.331200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1300</td>\n",
       "      <td>0.309800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1400</td>\n",
       "      <td>0.305700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1500</td>\n",
       "      <td>0.299400</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1600</td>\n",
       "      <td>0.294500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1700</td>\n",
       "      <td>0.207200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1800</td>\n",
       "      <td>0.191500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1900</td>\n",
       "      <td>0.226800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2000</td>\n",
       "      <td>0.163900</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2100</td>\n",
       "      <td>0.186600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2200</td>\n",
       "      <td>0.217100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2300</td>\n",
       "      <td>0.179600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2400</td>\n",
       "      <td>0.187800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2500</td>\n",
       "      <td>0.167500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2600</td>\n",
       "      <td>0.204400</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2700</td>\n",
       "      <td>0.182700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2800</td>\n",
       "      <td>0.195400</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2900</td>\n",
       "      <td>0.183800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3000</td>\n",
       "      <td>0.184700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3100</td>\n",
       "      <td>0.181700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3200</td>\n",
       "      <td>0.110600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3300</td>\n",
       "      <td>0.071500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3400</td>\n",
       "      <td>0.098600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3500</td>\n",
       "      <td>0.084200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3600</td>\n",
       "      <td>0.085900</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3700</td>\n",
       "      <td>0.083100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3800</td>\n",
       "      <td>0.085900</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3900</td>\n",
       "      <td>0.097200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4000</td>\n",
       "      <td>0.077700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4100</td>\n",
       "      <td>0.089600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4200</td>\n",
       "      <td>0.096600</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4300</td>\n",
       "      <td>0.073400</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4400</td>\n",
       "      <td>0.086300</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4500</td>\n",
       "      <td>0.060700</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4600</td>\n",
       "      <td>0.059000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='1563' max='1563' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [1563/1563 2:00:59]\n",
       "    </div>\n",
       "    "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "✔ Evaluación final en test:\n",
      "  eval_loss: 0.5139\n",
      "  eval_accuracy: 0.8884\n",
      "  eval_f1: 0.8883\n",
      "  eval_runtime: 7263.0685\n",
      "  eval_samples_per_second: 3.4420\n",
      "  eval_steps_per_second: 0.2150\n",
      "  epoch: 3.0000\n",
      "\n",
      "✔ Modelo y tokenizer guardados en 'sentiment-bert-model/'\n"
     ]
    }
   ],
   "source": [
    "# -------------------------------------------------------------\n",
    "# CELDA 3: DEFINICIÓN, ENTRENAMIENTO, EVALUACIÓN Y GUARDADO\n",
    "# -------------------------------------------------------------\n",
    "\n",
    "# 1) Importaciones para el entrenamiento\n",
    "from transformers import (\n",
    "    AutoModelForSequenceClassification,\n",
    "    TrainingArguments,\n",
    "    Trainer\n",
    ")\n",
    "import numpy as np\n",
    "from sklearn.metrics import accuracy_score, f1_score\n",
    "\n",
    "# 2) Carga del modelo BERT para clasificación binaria\n",
    "#    num_labels=2 porque tenemos dos clases: positiva y negativa\n",
    "model = AutoModelForSequenceClassification.from_pretrained(\n",
    "    \"bert-base-uncased\",\n",
    "    num_labels=2\n",
    ")\n",
    "\n",
    "# 3) Definición de la función de métricas\n",
    "def compute_metrics(eval_pred):\n",
    "    logits, labels = eval_pred\n",
    "    preds = np.argmax(logits, axis=1)\n",
    "    return {\n",
    "        \"accuracy\": accuracy_score(labels, preds),\n",
    "        \"f1\":       f1_score(labels, preds)\n",
    "    }\n",
    "\n",
    "# 4) Configuración de los argumentos de entrenamiento\n",
    "#    Adaptado a transformers 4.51.3 con do_train y do_eval\n",
    "training_args = TrainingArguments(\n",
    "    output_dir=\"./results\",            # Carpeta donde guardar checkpoints\n",
    "    num_train_epochs=3,                # Número de pasadas sobre el dataset\n",
    "    per_device_train_batch_size=16,    # Tamaño de batch en entrenamiento\n",
    "    per_device_eval_batch_size=16,     # Tamaño de batch en evaluación\n",
    "    do_train=True,                     # Ejecutar fase de entrenamiento\n",
    "    do_eval=True,                      # Ejecutar evaluación al final\n",
    "    logging_dir=\"./logs\",              # Carpeta de logs para TensorBoard\n",
    "    logging_steps=100                  # Cada cuántos pasos registrar métricas\n",
    ")\n",
    "\n",
    "print(\"✔ TrainingArguments configurados\")\n",
    "\n",
    "# 5) Creación del Trainer\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=train_dataset,      # Viene de la celda 2\n",
    "    eval_dataset=test_dataset,        # Viene de la celda 2\n",
    "    compute_metrics=compute_metrics\n",
    ")\n",
    "\n",
    "print(\"✔ Trainer instanciado\")\n",
    "\n",
    "# 6) Lanzar el entrenamiento\n",
    "print(\"\\n→ Entrenamiento en curso… puede tardar varios minutos:\")\n",
    "trainer.train()\n",
    "\n",
    "# 7) Evaluación final en test set\n",
    "metrics = trainer.evaluate()\n",
    "print(\"\\n✔ Evaluación final en test:\")\n",
    "for name, value in metrics.items():\n",
    "    print(f\"  {name}: {value:.4f}\")\n",
    "\n",
    "# 8) Guardar modelo y tokenizer para despliegue\n",
    "trainer.save_model(\"sentiment-bert-model\")        # Pesos y config\n",
    "tokenizer.save_pretrained(\"sentiment-bert-model\") # Archivos del tokenizer\n",
    "print(\"\\n✔ Modelo y tokenizer guardados en 'sentiment-bert-model/'\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "0db4d022-aa06-40e2-b4b8-ab6b1e226a16",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: huggingface_hub in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (0.31.1)\n",
      "Collecting huggingface_hub\n",
      "  Using cached huggingface_hub-0.32.0-py3-none-any.whl.metadata (14 kB)\n",
      "Requirement already satisfied: filelock in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (3.18.0)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (2025.3.0)\n",
      "Requirement already satisfied: packaging>=20.9 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (25.0)\n",
      "Requirement already satisfied: pyyaml>=5.1 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (6.0.2)\n",
      "Requirement already satisfied: requests in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (2.32.3)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (4.67.1)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from huggingface_hub) (4.13.2)\n",
      "Requirement already satisfied: colorama in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from tqdm>=4.42.1->huggingface_hub) (0.4.6)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (3.4.2)\n",
      "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (3.10)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (2.4.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\light\\documents\\sentiment-analysis-bert\\venv\\lib\\site-packages (from requests->huggingface_hub) (2025.4.26)\n",
      "Using cached huggingface_hub-0.32.0-py3-none-any.whl (509 kB)\n",
      "Installing collected packages: huggingface_hub\n",
      "  Attempting uninstall: huggingface_hub\n",
      "    Found existing installation: huggingface-hub 0.31.1\n",
      "    Uninstalling huggingface-hub-0.31.1:\n",
      "      Successfully uninstalled huggingface-hub-0.31.1\n",
      "Successfully installed huggingface_hub-0.32.0\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "%pip install --upgrade huggingface_hub"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "031f4c70-5a75-4d89-9905-bbf8016b7b68",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from huggingface_hub import HfApi, login, create_repo\n",
    "\n",
    "# --- CONFIGURACIÓN CRUCIAL ---\n",
    "HF_USERNAME = \"Light-Dav\"  # ¡Tu nombre de usuario correcto!\n",
    "HF_TOKEN = \"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\"  # ¡Tu token de Hugging Face!\n",
    "\n",
    "REPO_NAME = \"sentiment-analysis-full-project\" # <--- ¡Confirma que este es el nombre EXACTO del repo en HF Hub!\n",
    "REPO_ID = f\"{HF_USERNAME}/{REPO_NAME}\"\n",
    "\n",
    "# --- AJUSTE DE LA RUTA DEL PROYECTO ---\n",
    "# Esto asegurará que siempre suba la raíz de tu proyecto, sin importar dónde esté el notebook.\n",
    "# Asumimos que tu carpeta principal es 'sentiment-analysis-bert'\n",
    "# y que tu notebook está dentro de ella o en una subcarpeta (como 'notebooks').\n",
    "# Puedes ajustar esta ruta si tu proyecto no está en C:\\Users\\Light\\Documents\\sentiment-analysis-bert\n",
    "PROJECT_ROOT_DIR = \"C:\\\\Users\\\\Light\\\\Documents\\\\sentiment-analysis-bert\"\n",
    "\n",
    "\n",
    "print(f\"La ruta del proyecto a subir es: {PROJECT_ROOT_DIR}\")\n",
    "print(f\"El repositorio de destino será: {REPO_ID}\")\n",
    "\n",
    "# --- EJECUCIÓN ---\n",
    "try:\n",
    "    print(\"\\n--- Paso 1: Iniciando sesión en Hugging Face Hub ---\")\n",
    "    login(token=HF_TOKEN)\n",
    "    print(\"Inicio de sesión exitoso en Hugging Face Hub.\")\n",
    "\n",
    "    api = HfApi()\n",
    "\n",
    "    print(f\"\\n--- Paso 2: Creando/Verificando el repositorio '{REPO_ID}' en Hugging Face Hub ---\")\n",
    "    create_repo(repo_id=REPO_ID, private=False, exist_ok=True, token=HF_TOKEN)\n",
    "    print(f\"Repositorio '{REPO_ID}' creado o ya existe en Hugging Face Hub.\")\n",
    "\n",
    "    print(f\"\\n--- Paso 3: Subiendo el contenido de '{PROJECT_ROOT_DIR}' a '{REPO_ID}' ---\")\n",
    "    api.upload_folder(\n",
    "        folder_path=PROJECT_ROOT_DIR,\n",
    "        repo_id=REPO_ID,\n",
    "        repo_type=\"model\",\n",
    "        commit_message=\"Initial upload of full sentiment analysis project (code, notebooks, data)\",\n",
    "        # Ahora 'git_exclude' debería funcionar después de la actualización.\n",
    "        git_exclude=[\n",
    "            \"venv/\",                   # Excluye el entorno virtual\n",
    "            \"**/__pycache__/\",         # Excluye archivos de caché de Python\n",
    "            \"*.ipynb_checkpoints/\",    # Excluye checkpoints de Jupyter si están en la raíz\n",
    "            \"notebooks/.ipynb_checkpoints/\", # Excluye checkpoints específicos de notebooks\n",
    "            # Puedes añadir más exclusiones aquí, ej: \"data/raw_large_files/\"\n",
    "            # También podrías querer excluir tu modelo ya subido si ya está en otro repo:\n",
    "            # \"sentiment-bert-model/\"\n",
    "        ],\n",
    "        multi_commits=True # Útil para uploads grandes\n",
    "    )\n",
    "\n",
    "    print(\"\\n¡Carga de todo el proyecto completada con éxito!\")\n",
    "    print(f\"Tu proyecto está ahora disponible en: https://huggingface.co/{REPO_ID}\")\n",
    "\n",
    "except Exception as e:\n",
    "    print(f\"\\nERROR al subir el proyecto a Hugging Face Hub: {e}\")\n",
    "    print(\"Verifica los siguientes puntos:\")\n",
    "    print(f\"- Tu nombre de usuario: '{HF_USERNAME}' y tu token son correctos y tienen permisos de escritura.\")\n",
    "    print(f\"- El nombre del repositorio: '{REPO_NAME}' es el que deseas.\")\n",
    "    print(f\"- La ruta local del proyecto: '{PROJECT_ROOT_DIR}' es la correcta y contiene todos tus archivos.\")\n",
    "    print(\"- Tienes conexión a internet.\")\n",
    "    print(\"- ¡MUY IMPORTANTE: Asegúrate de haber reiniciado el kernel de Jupyter después de actualizar la librería!\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}