Update README.md
Browse files
README.md
CHANGED
@@ -6,7 +6,6 @@ pinned: true
|
|
6 |
language:
|
7 |
- en
|
8 |
license: other
|
9 |
-
pipeline_tag: text-to-video
|
10 |
library_name: diffusers
|
11 |
---
|
12 |
|
@@ -14,7 +13,6 @@ library_name: diffusers
|
|
14 |
This model card focuses on the model associated with the LTX-Video model, codebase available [here](https://github.com/Lightricks/LTX-Video).
|
15 |
|
16 |
LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 30 FPS videos at a 1216×704 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content.
|
17 |
-
We provide a model for both text-to-video as well as image+text-to-video usecases
|
18 |
|
19 |
<img src="./media/trailer.gif" alt="trailer" width="512">
|
20 |
|
@@ -40,7 +38,7 @@ We provide a model for both text-to-video as well as image+text-to-video usecase
|
|
40 |
|
41 |
## Model Details
|
42 |
- **Developed by:** Lightricks
|
43 |
-
- **Model type:** Diffusion-based
|
44 |
- **Language(s):** English
|
45 |
|
46 |
|
@@ -73,7 +71,7 @@ The model is accessible right away via the following links:
|
|
73 |
- [LTX-Studio image-to-video (13B distilled)](https://app.ltx.studio/motion-workspace?videoModel=ltxv)
|
74 |
- [Fal.ai image-to-video (13B full)](https://fal.ai/models/fal-ai/ltx-video-13b-dev/image-to-video)
|
75 |
- [Fal.ai image-to-video (13B distilled)](https://fal.ai/models/fal-ai/ltx-video-13b-distilled/image-to-video)
|
76 |
-
- [Replicate
|
77 |
|
78 |
### ComfyUI
|
79 |
To use our model with ComfyUI, please follow the instructions at a dedicated [ComfyUI repo](https://github.com/Lightricks/ComfyUI-LTXVideo/).
|
@@ -116,7 +114,7 @@ python inference.py --prompt "PROMPT" --conditioning_media_paths IMAGE_OR_VIDEO_
|
|
116 |
|
117 |
### Diffusers 🧨
|
118 |
|
119 |
-
LTX Video is compatible with the [Diffusers Python library](https://huggingface.co/docs/diffusers/main/en/index)
|
120 |
|
121 |
Make sure you install `diffusers` before trying out the examples below.
|
122 |
|
@@ -202,74 +200,6 @@ video = [frame.resize((expected_width, expected_height)) for frame in video]
|
|
202 |
export_to_video(video, "output.mp4", fps=24)
|
203 |
```
|
204 |
|
205 |
-
### text-to-video:
|
206 |
-
```py
|
207 |
-
import torch
|
208 |
-
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
|
209 |
-
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
|
210 |
-
from diffusers.utils import export_to_video
|
211 |
-
|
212 |
-
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
|
213 |
-
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
|
214 |
-
pipe.to("cuda")
|
215 |
-
pipe_upsample.to("cuda")
|
216 |
-
pipe.vae.enable_tiling()
|
217 |
-
|
218 |
-
def round_to_nearest_resolution_acceptable_by_vae(height, width):
|
219 |
-
height = height - (height % pipe.vae_spatial_compression_ratio)
|
220 |
-
width = width - (width % pipe.vae_spatial_compression_ratio)
|
221 |
-
return height, width
|
222 |
-
|
223 |
-
prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
|
224 |
-
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
225 |
-
expected_height, expected_width = 512, 704
|
226 |
-
downscale_factor = 2 / 3
|
227 |
-
num_frames = 121
|
228 |
-
|
229 |
-
# Part 1. Generate video at smaller resolution
|
230 |
-
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
231 |
-
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
|
232 |
-
latents = pipe(
|
233 |
-
conditions=None,
|
234 |
-
prompt=prompt,
|
235 |
-
negative_prompt=negative_prompt,
|
236 |
-
width=downscaled_width,
|
237 |
-
height=downscaled_height,
|
238 |
-
num_frames=num_frames,
|
239 |
-
num_inference_steps=30,
|
240 |
-
generator=torch.Generator().manual_seed(0),
|
241 |
-
output_type="latent",
|
242 |
-
).frames
|
243 |
-
|
244 |
-
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
|
245 |
-
# The available latent upsampler upscales the height/width by 2x
|
246 |
-
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
247 |
-
upscaled_latents = pipe_upsample(
|
248 |
-
latents=latents,
|
249 |
-
output_type="latent"
|
250 |
-
).frames
|
251 |
-
|
252 |
-
# Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
|
253 |
-
video = pipe(
|
254 |
-
prompt=prompt,
|
255 |
-
negative_prompt=negative_prompt,
|
256 |
-
width=upscaled_width,
|
257 |
-
height=upscaled_height,
|
258 |
-
num_frames=num_frames,
|
259 |
-
denoise_strength=0.4, # Effectively, 4 inference steps out of 10
|
260 |
-
num_inference_steps=10,
|
261 |
-
latents=upscaled_latents,
|
262 |
-
decode_timestep=0.05,
|
263 |
-
image_cond_noise_scale=0.025,
|
264 |
-
generator=torch.Generator().manual_seed(0),
|
265 |
-
output_type="pil",
|
266 |
-
).frames[0]
|
267 |
-
|
268 |
-
# Part 4. Downscale the video to the expected resolution
|
269 |
-
video = [frame.resize((expected_width, expected_height)) for frame in video]
|
270 |
-
|
271 |
-
export_to_video(video, "output.mp4", fps=24)
|
272 |
-
```
|
273 |
|
274 |
### For video-to-video:
|
275 |
|
|
|
6 |
language:
|
7 |
- en
|
8 |
license: other
|
|
|
9 |
library_name: diffusers
|
10 |
---
|
11 |
|
|
|
13 |
This model card focuses on the model associated with the LTX-Video model, codebase available [here](https://github.com/Lightricks/LTX-Video).
|
14 |
|
15 |
LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 30 FPS videos at a 1216×704 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content.
|
|
|
16 |
|
17 |
<img src="./media/trailer.gif" alt="trailer" width="512">
|
18 |
|
|
|
38 |
|
39 |
## Model Details
|
40 |
- **Developed by:** Lightricks
|
41 |
+
- **Model type:** Diffusion-based image-to-video generation model
|
42 |
- **Language(s):** English
|
43 |
|
44 |
|
|
|
71 |
- [LTX-Studio image-to-video (13B distilled)](https://app.ltx.studio/motion-workspace?videoModel=ltxv)
|
72 |
- [Fal.ai image-to-video (13B full)](https://fal.ai/models/fal-ai/ltx-video-13b-dev/image-to-video)
|
73 |
- [Fal.ai image-to-video (13B distilled)](https://fal.ai/models/fal-ai/ltx-video-13b-distilled/image-to-video)
|
74 |
+
- [Replicate image-to-video](https://replicate.com/lightricks/ltx-video)
|
75 |
|
76 |
### ComfyUI
|
77 |
To use our model with ComfyUI, please follow the instructions at a dedicated [ComfyUI repo](https://github.com/Lightricks/ComfyUI-LTXVideo/).
|
|
|
114 |
|
115 |
### Diffusers 🧨
|
116 |
|
117 |
+
LTX Video is compatible with the [Diffusers Python library](https://huggingface.co/docs/diffusers/main/en/index) for image-to-video generation.
|
118 |
|
119 |
Make sure you install `diffusers` before trying out the examples below.
|
120 |
|
|
|
200 |
export_to_video(video, "output.mp4", fps=24)
|
201 |
```
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
### For video-to-video:
|
205 |
|