Upload pipeline.py with huggingface_hub
Browse files- pipeline.py +45 -0
pipeline.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import whisper
|
3 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
4 |
+
from googletrans import Translator
|
5 |
+
import torch
|
6 |
+
|
7 |
+
def load_models():
|
8 |
+
lang_detector = whisper.load_model("small")
|
9 |
+
tamil_processor = WhisperProcessor.from_pretrained("Lingalingeswaran/whisper-small-ta")
|
10 |
+
tamil_model = WhisperForConditionalGeneration.from_pretrained("Lingalingeswaran/whisper-small-ta")
|
11 |
+
sinhala_processor = WhisperProcessor.from_pretrained("Lingalingeswaran/whisper-small-sinhala")
|
12 |
+
sinhala_model = WhisperForConditionalGeneration.from_pretrained("Lingalingeswaran/whisper-small-sinhala")
|
13 |
+
english_model = whisper.load_model("small")
|
14 |
+
return lang_detector, tamil_processor, tamil_model, sinhala_processor, sinhala_model, english_model
|
15 |
+
|
16 |
+
def detect_language(audio_file, lang_detector):
|
17 |
+
audio = whisper.load_audio(audio_file)
|
18 |
+
audio = whisper.pad_or_trim(audio)
|
19 |
+
mel = whisper.log_mel_spectrogram(audio).to(lang_detector.device)
|
20 |
+
_, probs = lang_detector.detect_language(mel)
|
21 |
+
return max(probs, key=probs.get)
|
22 |
+
|
23 |
+
def transcribe_audio(audio_file, detected_lang, tamil_processor, tamil_model, sinhala_processor, sinhala_model, english_model):
|
24 |
+
if detected_lang == "ta":
|
25 |
+
processor, model = tamil_processor, tamil_model
|
26 |
+
elif detected_lang == "si":
|
27 |
+
processor, model = sinhala_processor, sinhala_model
|
28 |
+
else:
|
29 |
+
model = english_model
|
30 |
+
return model.transcribe(audio_file)["text"]
|
31 |
+
|
32 |
+
audio = whisper.load_audio(audio_file)
|
33 |
+
inputs = processor(audio, return_tensors="pt", sampling_rate=16000)
|
34 |
+
with torch.no_grad():
|
35 |
+
predicted_ids = model.generate(**inputs)
|
36 |
+
return processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
37 |
+
|
38 |
+
def translate_to_english(text):
|
39 |
+
return Translator().translate(text, dest="en").text
|
40 |
+
|
41 |
+
def full_pipeline(audio_file):
|
42 |
+
lang_detector, tamil_processor, tamil_model, sinhala_processor, sinhala_model, english_model = load_models()
|
43 |
+
detected_lang = detect_language(audio_file, lang_detector)
|
44 |
+
transcription = transcribe_audio(audio_file, detected_lang, tamil_processor, tamil_model, sinhala_processor, sinhala_model, english_model)
|
45 |
+
return translate_to_english(transcription)
|