Update README.md
Browse files
README.md
CHANGED
@@ -86,4 +86,38 @@ The following hyperparameters were used during training:
|
|
86 |
- Transformers 4.45.2
|
87 |
- Pytorch 2.4.1+cu121
|
88 |
- Datasets 3.0.1
|
89 |
-
- Tokenizers 0.20.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
- Transformers 4.45.2
|
87 |
- Pytorch 2.4.1+cu121
|
88 |
- Datasets 3.0.1
|
89 |
+
- Tokenizers 0.20.1
|
90 |
+
|
91 |
+
|
92 |
+
## Example Usage
|
93 |
+
|
94 |
+
Here is an example of how to use the model for Tamil speech recognition with Gradio:
|
95 |
+
|
96 |
+
```python
|
97 |
+
import gradio as gr
|
98 |
+
from transformers import pipeline
|
99 |
+
|
100 |
+
# Initialize the pipeline with the specified model
|
101 |
+
pipe = pipeline(model="Lingalingeswaran/whisper-small-ta")
|
102 |
+
|
103 |
+
def transcribe(audio):
|
104 |
+
# Transcribe the audio file to text
|
105 |
+
text = pipe(audio)["text"]
|
106 |
+
return text
|
107 |
+
|
108 |
+
# Create the Gradio interface
|
109 |
+
|
110 |
+
iface = gr.Interface(
|
111 |
+
fn=transcribe,
|
112 |
+
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
|
113 |
+
outputs="text",
|
114 |
+
title="Whisper Small Sinhala",
|
115 |
+
description="Realtime demo for Tamil speech recognition using a fine-tuned Whisper small model.",
|
116 |
+
)
|
117 |
+
|
118 |
+
# Launch the interface
|
119 |
+
if __name__ == "__main__":
|
120 |
+
iface.launch()
|
121 |
+
|
122 |
+
|
123 |
+
|