Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
|
3 |
+
datasets:
|
4 |
+
- OpenLLM-Ro/ro_sft_alpaca
|
5 |
+
- OpenLLM-Ro/ro_sft_alpaca_gpt4
|
6 |
+
- OpenLLM-Ro/ro_sft_dolly
|
7 |
+
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
|
8 |
+
- OpenLLM-Ro/ro_sft_norobots
|
9 |
+
- OpenLLM-Ro/ro_sft_orca
|
10 |
+
- OpenLLM-Ro/ro_sft_camel
|
11 |
+
- OpenLLM-Ro/ro_sft_oasst
|
12 |
+
- OpenLLM-Ro/ro_sft_ultrachat
|
13 |
+
- OpenLLM-Ro/ro_sft_magpie_mt
|
14 |
+
- OpenLLM-Ro/ro_sft_magpie_reasoning
|
15 |
+
language:
|
16 |
+
- ro
|
17 |
+
license: cc-by-nc-4.0
|
18 |
+
tags:
|
19 |
+
- llama-cpp
|
20 |
+
- gguf-my-repo
|
21 |
+
model-index:
|
22 |
+
- name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: text-generation
|
26 |
+
dataset:
|
27 |
+
name: RoMT-Bench
|
28 |
+
type: RoMT-Bench
|
29 |
+
metrics:
|
30 |
+
- type: Score
|
31 |
+
value: 6.43
|
32 |
+
name: Score
|
33 |
+
- type: Score
|
34 |
+
value: 6.78
|
35 |
+
name: First turn
|
36 |
+
- type: Score
|
37 |
+
value: 6.09
|
38 |
+
name: Second turn
|
39 |
+
- task:
|
40 |
+
type: text-generation
|
41 |
+
dataset:
|
42 |
+
name: RoCulturaBench
|
43 |
+
type: RoCulturaBench
|
44 |
+
metrics:
|
45 |
+
- type: Score
|
46 |
+
value: 4.28
|
47 |
+
name: Score
|
48 |
+
- task:
|
49 |
+
type: text-generation
|
50 |
+
dataset:
|
51 |
+
name: Romanian_Academic_Benchmarks
|
52 |
+
type: Romanian_Academic_Benchmarks
|
53 |
+
metrics:
|
54 |
+
- type: accuracy
|
55 |
+
value: 53.36
|
56 |
+
name: Average accuracy
|
57 |
+
- task:
|
58 |
+
type: text-generation
|
59 |
+
dataset:
|
60 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
61 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
62 |
+
metrics:
|
63 |
+
- type: accuracy
|
64 |
+
value: 48.97
|
65 |
+
name: Average accuracy
|
66 |
+
- type: accuracy
|
67 |
+
value: 45.24
|
68 |
+
name: 0-shot
|
69 |
+
- type: accuracy
|
70 |
+
value: 47.67
|
71 |
+
name: 1-shot
|
72 |
+
- type: accuracy
|
73 |
+
value: 49.36
|
74 |
+
name: 3-shot
|
75 |
+
- type: accuracy
|
76 |
+
value: 50.13
|
77 |
+
name: 5-shot
|
78 |
+
- type: accuracy
|
79 |
+
value: 50.81
|
80 |
+
name: 10-shot
|
81 |
+
- type: accuracy
|
82 |
+
value: 50.64
|
83 |
+
name: 25-shot
|
84 |
+
- task:
|
85 |
+
type: text-generation
|
86 |
+
dataset:
|
87 |
+
name: OpenLLM-Ro/ro_mmlu
|
88 |
+
type: OpenLLM-Ro/ro_mmlu
|
89 |
+
metrics:
|
90 |
+
- type: accuracy
|
91 |
+
value: 55.17
|
92 |
+
name: Average accuracy
|
93 |
+
- type: accuracy
|
94 |
+
value: 54.23
|
95 |
+
name: 0-shot
|
96 |
+
- type: accuracy
|
97 |
+
value: 56.36
|
98 |
+
name: 1-shot
|
99 |
+
- type: accuracy
|
100 |
+
value: 55.34
|
101 |
+
name: 3-shot
|
102 |
+
- type: accuracy
|
103 |
+
value: 54.74
|
104 |
+
name: 5-shot
|
105 |
+
- task:
|
106 |
+
type: text-generation
|
107 |
+
dataset:
|
108 |
+
name: OpenLLM-Ro/ro_winogrande
|
109 |
+
type: OpenLLM-Ro/ro_winogrande
|
110 |
+
metrics:
|
111 |
+
- type: accuracy
|
112 |
+
value: 66.52
|
113 |
+
name: Average accuracy
|
114 |
+
- type: accuracy
|
115 |
+
value: 64.96
|
116 |
+
name: 0-shot
|
117 |
+
- type: accuracy
|
118 |
+
value: 66.77
|
119 |
+
name: 1-shot
|
120 |
+
- type: accuracy
|
121 |
+
value: 67.09
|
122 |
+
name: 3-shot
|
123 |
+
- type: accuracy
|
124 |
+
value: 67.25
|
125 |
+
name: 5-shot
|
126 |
+
- task:
|
127 |
+
type: text-generation
|
128 |
+
dataset:
|
129 |
+
name: OpenLLM-Ro/ro_hellaswag
|
130 |
+
type: OpenLLM-Ro/ro_hellaswag
|
131 |
+
metrics:
|
132 |
+
- type: accuracy
|
133 |
+
value: 60.73
|
134 |
+
name: Average accuracy
|
135 |
+
- type: accuracy
|
136 |
+
value: 59.72
|
137 |
+
name: 0-shot
|
138 |
+
- type: accuracy
|
139 |
+
value: 60.3
|
140 |
+
name: 1-shot
|
141 |
+
- type: accuracy
|
142 |
+
value: 60.87
|
143 |
+
name: 3-shot
|
144 |
+
- type: accuracy
|
145 |
+
value: 61.14
|
146 |
+
name: 5-shot
|
147 |
+
- type: accuracy
|
148 |
+
value: 61.63
|
149 |
+
name: 10-shot
|
150 |
+
- task:
|
151 |
+
type: text-generation
|
152 |
+
dataset:
|
153 |
+
name: OpenLLM-Ro/ro_gsm8k
|
154 |
+
type: OpenLLM-Ro/ro_gsm8k
|
155 |
+
metrics:
|
156 |
+
- type: accuracy
|
157 |
+
value: 42.03
|
158 |
+
name: Average accuracy
|
159 |
+
- type: accuracy
|
160 |
+
value: 30.86
|
161 |
+
name: 1-shot
|
162 |
+
- type: accuracy
|
163 |
+
value: 43.9
|
164 |
+
name: 3-shot
|
165 |
+
- type: accuracy
|
166 |
+
value: 51.33
|
167 |
+
name: 5-shot
|
168 |
+
- task:
|
169 |
+
type: text-generation
|
170 |
+
dataset:
|
171 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
172 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
173 |
+
metrics:
|
174 |
+
- type: accuracy
|
175 |
+
value: 46.71
|
176 |
+
name: Average accuracy
|
177 |
+
- task:
|
178 |
+
type: text-generation
|
179 |
+
dataset:
|
180 |
+
name: LaRoSeDa_binary
|
181 |
+
type: LaRoSeDa_binary
|
182 |
+
metrics:
|
183 |
+
- type: macro-f1
|
184 |
+
value: 95.32
|
185 |
+
name: Average macro-f1
|
186 |
+
- type: macro-f1
|
187 |
+
value: 90.97
|
188 |
+
name: 0-shot
|
189 |
+
- type: macro-f1
|
190 |
+
value: 95.53
|
191 |
+
name: 1-shot
|
192 |
+
- type: macro-f1
|
193 |
+
value: 97.1
|
194 |
+
name: 3-shot
|
195 |
+
- type: macro-f1
|
196 |
+
value: 97.67
|
197 |
+
name: 5-shot
|
198 |
+
- task:
|
199 |
+
type: text-generation
|
200 |
+
dataset:
|
201 |
+
name: LaRoSeDa_multiclass
|
202 |
+
type: LaRoSeDa_multiclass
|
203 |
+
metrics:
|
204 |
+
- type: macro-f1
|
205 |
+
value: 60.84
|
206 |
+
name: Average macro-f1
|
207 |
+
- type: macro-f1
|
208 |
+
value: 63.2
|
209 |
+
name: 0-shot
|
210 |
+
- type: macro-f1
|
211 |
+
value: 64.47
|
212 |
+
name: 1-shot
|
213 |
+
- type: macro-f1
|
214 |
+
value: 55.88
|
215 |
+
name: 3-shot
|
216 |
+
- type: macro-f1
|
217 |
+
value: 59.8
|
218 |
+
name: 5-shot
|
219 |
+
- task:
|
220 |
+
type: text-generation
|
221 |
+
dataset:
|
222 |
+
name: WMT_EN-RO
|
223 |
+
type: WMT_EN-RO
|
224 |
+
metrics:
|
225 |
+
- type: bleu
|
226 |
+
value: 23.18
|
227 |
+
name: Average bleu
|
228 |
+
- type: bleu
|
229 |
+
value: 4.92
|
230 |
+
name: 0-shot
|
231 |
+
- type: bleu
|
232 |
+
value: 28.01
|
233 |
+
name: 1-shot
|
234 |
+
- type: bleu
|
235 |
+
value: 30.16
|
236 |
+
name: 3-shot
|
237 |
+
- type: bleu
|
238 |
+
value: 29.61
|
239 |
+
name: 5-shot
|
240 |
+
- task:
|
241 |
+
type: text-generation
|
242 |
+
dataset:
|
243 |
+
name: WMT_RO-EN
|
244 |
+
type: WMT_RO-EN
|
245 |
+
metrics:
|
246 |
+
- type: bleu
|
247 |
+
value: 25.11
|
248 |
+
name: Average bleu
|
249 |
+
- type: bleu
|
250 |
+
value: 1.43
|
251 |
+
name: 0-shot
|
252 |
+
- type: bleu
|
253 |
+
value: 24.78
|
254 |
+
name: 1-shot
|
255 |
+
- type: bleu
|
256 |
+
value: 37.31
|
257 |
+
name: 3-shot
|
258 |
+
- type: bleu
|
259 |
+
value: 36.93
|
260 |
+
name: 5-shot
|
261 |
+
- task:
|
262 |
+
type: text-generation
|
263 |
+
dataset:
|
264 |
+
name: XQuAD
|
265 |
+
type: XQuAD
|
266 |
+
metrics:
|
267 |
+
- type: exact_match
|
268 |
+
value: 10.74
|
269 |
+
name: Average exact_match
|
270 |
+
- type: f1
|
271 |
+
value: 19.75
|
272 |
+
name: Average f1
|
273 |
+
- task:
|
274 |
+
type: text-generation
|
275 |
+
dataset:
|
276 |
+
name: STS
|
277 |
+
type: STS
|
278 |
+
metrics:
|
279 |
+
- type: spearman
|
280 |
+
value: 73.53
|
281 |
+
name: Average spearman
|
282 |
+
- type: pearson
|
283 |
+
value: 74.93
|
284 |
+
name: Average pearson
|
285 |
+
- task:
|
286 |
+
type: text-generation
|
287 |
+
dataset:
|
288 |
+
name: XQuAD_EM
|
289 |
+
type: XQuAD_EM
|
290 |
+
metrics:
|
291 |
+
- type: exact_match
|
292 |
+
value: 11.18
|
293 |
+
name: 0-shot
|
294 |
+
- type: exact_match
|
295 |
+
value: 26.47
|
296 |
+
name: 1-shot
|
297 |
+
- type: exact_match
|
298 |
+
value: 3.95
|
299 |
+
name: 3-shot
|
300 |
+
- type: exact_match
|
301 |
+
value: 1.34
|
302 |
+
name: 5-shot
|
303 |
+
- task:
|
304 |
+
type: text-generation
|
305 |
+
dataset:
|
306 |
+
name: XQuAD_F1
|
307 |
+
type: XQuAD_F1
|
308 |
+
metrics:
|
309 |
+
- type: f1
|
310 |
+
value: 25.76
|
311 |
+
name: 0-shot
|
312 |
+
- type: f1
|
313 |
+
value: 39.25
|
314 |
+
name: 1-shot
|
315 |
+
- type: f1
|
316 |
+
value: 8.4
|
317 |
+
name: 3-shot
|
318 |
+
- type: f1
|
319 |
+
value: 5.58
|
320 |
+
name: 5-shot
|
321 |
+
- task:
|
322 |
+
type: text-generation
|
323 |
+
dataset:
|
324 |
+
name: STS_Spearman
|
325 |
+
type: STS_Spearman
|
326 |
+
metrics:
|
327 |
+
- type: spearman
|
328 |
+
value: 73.52
|
329 |
+
name: 1-shot
|
330 |
+
- type: spearman
|
331 |
+
value: 74.02
|
332 |
+
name: 3-shot
|
333 |
+
- type: spearman
|
334 |
+
value: 73.06
|
335 |
+
name: 5-shot
|
336 |
+
- task:
|
337 |
+
type: text-generation
|
338 |
+
dataset:
|
339 |
+
name: STS_Pearson
|
340 |
+
type: STS_Pearson
|
341 |
+
metrics:
|
342 |
+
- type: pearson
|
343 |
+
value: 75.81
|
344 |
+
name: 1-shot
|
345 |
+
- type: pearson
|
346 |
+
value: 74.54
|
347 |
+
name: 3-shot
|
348 |
+
- type: pearson
|
349 |
+
value: 74.43
|
350 |
+
name: 5-shot
|
351 |
+
---
|
352 |
+
|
353 |
+
# LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF
|
354 |
+
This model was converted to GGUF format from [`OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23`](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
355 |
+
Refer to the [original model card](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) for more details on the model.
|
356 |
+
|
357 |
+
## Use with llama.cpp
|
358 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
359 |
+
|
360 |
+
```bash
|
361 |
+
brew install llama.cpp
|
362 |
+
|
363 |
+
```
|
364 |
+
Invoke the llama.cpp server or the CLI.
|
365 |
+
|
366 |
+
### CLI:
|
367 |
+
```bash
|
368 |
+
llama-cli --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -p "The meaning to life and the universe is"
|
369 |
+
```
|
370 |
+
|
371 |
+
### Server:
|
372 |
+
```bash
|
373 |
+
llama-server --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -c 2048
|
374 |
+
```
|
375 |
+
|
376 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
377 |
+
|
378 |
+
Step 1: Clone llama.cpp from GitHub.
|
379 |
+
```
|
380 |
+
git clone https://github.com/ggerganov/llama.cpp
|
381 |
+
```
|
382 |
+
|
383 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
384 |
+
```
|
385 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
386 |
+
```
|
387 |
+
|
388 |
+
Step 3: Run inference through the main binary.
|
389 |
+
```
|
390 |
+
./llama-cli --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -p "The meaning to life and the universe is"
|
391 |
+
```
|
392 |
+
or
|
393 |
+
```
|
394 |
+
./llama-server --hf-repo LinigDrake2875/RoLlama3.1-8b-Instruct-2025-04-23-Q4_K_M-GGUF --hf-file rollama3.1-8b-instruct-2025-04-23-q4_k_m.gguf -c 2048
|
395 |
+
```
|