Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
library_name: transformers
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Pico Mini V1
|
12 |
+
|
13 |
+
Pico v1 is a work in progress model. Based off Qwen 2.5 .5b model, it has been fine tuned for automatic COT and self reflection.
|
14 |
+
|
15 |
+
When making a output, Pico will create three sections, a reasoning section, a self-reflection section and a output section.
|
16 |
+
|
17 |
+
Pico Mini v1 struggles with non-question related tasks (Small talk, roleplay, etc).
|
18 |
+
|
19 |
+
Pico Mini v1 can struggle with staying on topic at times.
|
20 |
+
|
21 |
+
Here is a example of how you can use it:
|
22 |
+
|
23 |
+
```from transformers import AutoModelForCausalLM, AutoTokenizer
|
24 |
+
import torch
|
25 |
+
|
26 |
+
# Load the model and tokenizer from the Hugging Face Model Hub (test/test repository)
|
27 |
+
output_dir = "test/test"
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
|
30 |
+
print("Loading the model and tokenizer from the Hugging Face Hub...")
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(output_dir).to(device) # Ensure model is on the same device
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(output_dir)
|
33 |
+
|
34 |
+
# Define the testing prompt
|
35 |
+
prompt = "What color is the sky?"
|
36 |
+
print(f"Testing prompt: {prompt}")
|
37 |
+
|
38 |
+
# Tokenize input and move to the same device as the model
|
39 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device) # Ensure inputs are on the same device
|
40 |
+
|
41 |
+
# Generate response
|
42 |
+
print("Generating response...")
|
43 |
+
outputs = model.generate(
|
44 |
+
**inputs,
|
45 |
+
max_new_tokens=1550, # Adjust the max tokens if needed
|
46 |
+
temperature=0.5, # Adjust for response randomness
|
47 |
+
top_k=50, # Adjust for top-k sampling
|
48 |
+
top_p=0.9 # Adjust for nucleus sampling
|
49 |
+
)
|
50 |
+
|
51 |
+
# Decode and print the response
|
52 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
+
print("Generated response:")
|
54 |
+
print(response)
|
55 |
+
|
56 |
+
```
|