--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta_rse results: [] --- # deberta_rse This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0243 - Accuracy: 0.9961 - F1: 0.9961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8808 | 1.0 | 276 | 0.2620 | 0.9237 | 0.9242 | | 0.3108 | 2.0 | 552 | 0.2273 | 0.9471 | 0.9470 | | 0.2543 | 3.0 | 828 | 0.1193 | 0.9700 | 0.9700 | | 0.1788 | 4.0 | 1104 | 0.1284 | 0.9702 | 0.9705 | | 0.1296 | 5.0 | 1380 | 0.0549 | 0.9891 | 0.9891 | | 0.0669 | 6.0 | 1656 | 0.0398 | 0.9927 | 0.9927 | | 0.0658 | 7.0 | 1932 | 0.0299 | 0.9957 | 0.9957 | | 0.0379 | 8.0 | 2208 | 0.0216 | 0.9964 | 0.9964 | | 0.0312 | 9.0 | 2484 | 0.0243 | 0.9961 | 0.9961 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0