wangsssssss commited on
Commit
16fc55f
·
verified ·
1 Parent(s): e067374

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DDT: Decoupled Diffusion Transformer
2
+ <div style="text-align: center;">
3
+ <a href="https://arxiv.org/abs/2504.05741"><img src="https://img.shields.io/badge/arXiv-2504.05741-b31b1b.svg" alt="arXiv"></a>
4
+ <a href="https://huggingface.co/papers/2504.05741"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-sm.svg" alt="Paper page"></a>
5
+ </div>
6
+
7
+ <div style="text-align: center;">
8
+ <a href="https://paperswithcode.com/sota/image-generation-on-imagenet-256x256?p=ddt-decoupled-diffusion-transformer"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ddt-decoupled-diffusion-transformer/image-generation-on-imagenet-256x256" alt="PWC"></a>
9
+
10
+ <a href="https://paperswithcode.com/sota/image-generation-on-imagenet-512x512?p=ddt-decoupled-diffusion-transformer"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ddt-decoupled-diffusion-transformer/image-generation-on-imagenet-512x512" alt="PWC"></a>
11
+ </div>
12
+
13
+ ## Introduction
14
+ We decouple diffusion transformer into encoder-decoder design, and surpresingly that a **more substantial encoder yields performance improvements as model size increases**.
15
+ ![](./figs/main.png)
16
+ * We achieves **1.26 FID** on ImageNet256x256 Benchmark with DDT-XL/2(22en6de).
17
+ * We achieves **1.28 FID** on ImageNet512x512 Benchmark with DDT-XL/2(22en6de).
18
+ * As a byproduct, our DDT can reuse encoder among adjacent steps to accelerate inference.
19
+ ## Visualizations
20
+ ![](./figs/teaser.png)
21
+ ## Checkpoints
22
+ We take the off-shelf [VAE](https://huggingface.co/stabilityai/sd-vae-ft-ema) to encode image into latent space, and train the decoder with DDT.
23
+
24
+ | Dataset | Model | Params | FID | HuggingFace |
25
+ |-------------|-------------------|-----------|------|----------------------------------------------------------|
26
+ | ImageNet256 | DDT-XL/2(22en6de) | 675M | 1.26 | [🤗](https://huggingface.co/MCG-NJU/DDT-XL-22en6de-R256) |
27
+ | ImageNet512 | DDT-XL/2(22en6de) | 675M | 1.28 | [🤗](https://huggingface.co/MCG-NJU/DDT-XL-22en6de-R512) |
28
+ ## Online Demos
29
+ Coming soon.
30
+
31
+ ## Usages
32
+ We use ADM evaluation suite to report FID.
33
+ ```bash
34
+ # for installation
35
+ pip install -r requirements.txt
36
+ ```
37
+ ```bash
38
+ # for inference
39
+ python main.py predict -c configs/repa_improved_ddt_xlen22de6_256.yaml --ckpt_path=XXX.ckpt
40
+ ```
41
+
42
+ ```bash
43
+ # for training
44
+ # extract image latent (optional)
45
+ python3 tools/cache_imlatent4.py
46
+ # train
47
+ python main.py fit -c configs/repa_improved_ddt_xlen22de6_256.yaml
48
+ ```
49
+
50
+
51
+ ## Reference
52
+ ```bibtex
53
+ @ARTICLE{ddt,
54
+ title = "DDT: Decoupled Diffusion Transformer",
55
+ author = "Wang, Shuai and Tian, Zhi and Huang, Weilin and Wang, Limin",
56
+ month = apr,
57
+ year = 2025,
58
+ archivePrefix = "arXiv",
59
+ primaryClass = "cs.CV",
60
+ eprint = "2504.05741"
61
+ }
62
+ ```