File size: 45,713 Bytes
894113d aea47c2 894113d aea47c2 894113d 922ab2f aea47c2 04a3a49 73b8cbc 04a3a49 aea47c2 09dec51 aea47c2 09dec51 aea47c2 922ab2f 09dec51 894113d aea47c2 894113d aea47c2 894113d aea47c2 894113d 09dec51 894113d 09dec51 894113d 922ab2f 09dec51 894113d 922ab2f 894113d cdd2358 894113d aea47c2 894113d 922ab2f 894113d cdd0fdd 894113d 09dec51 894113d 09dec51 894113d aea47c2 0c97331 aea47c2 ee73e2d aea47c2 0c97331 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 ee73e2d aea47c2 ee73e2d 09dec51 0c97331 ee73e2d aea47c2 ee73e2d aea47c2 0c97331 aea47c2 0c97331 aea47c2 ee73e2d aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 09dec51 aea47c2 ee73e2d 894113d 09dec51 894113d 92f5e38 09dec51 92f5e38 09dec51 92f5e38 2e14e88 92f5e38 09dec51 894113d 922ab2f 09dec51 0c97331 09dec51 894113d 09dec51 894113d 09dec51 894113d 09dec51 ed3af08 09dec51 ed3af08 09dec51 894113d 09dec51 aea47c2 894113d 09dec51 894113d 09dec51 894113d 09dec51 894113d 09dec51 894113d 09dec51 894113d 09dec51 894113d 09dec51 894113d 09dec51 894113d cdd2358 894113d cdd2358 894113d cdd2358 894113d da18003 894113d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
---
license: other
datasets:
- MERaLiON/Multitask-National-Speech-Corpus-v1
language:
- en
- zh
- ms
- ta
- id
- th
- vi
metrics:
- wer
- bleu
base_model:
- openai/whisper-large-v3
- google/gemma-2-9b-it
library_name: transformers
tags:
- meralion
- meralion-2
---
<h1 align="center">🔥 MERaLiON-2 🔥</h1>
<p align="center">
<a href="https://huggingface.co/MERaLiON/MERaLiON-2-10B">🚀 MERaLiON-2-10B</a> |
<a href="https://huggingface.co/MERaLiON/MERaLiON-2-10B-ASR">🚀 MERaLiON-2-10B-ASR</a> |
<a href="https://huggingface.co/MERaLiON/MERaLiON-2-3B">🚀 MERaLiON-2-3B</a>
</p>
<p align="center">
<a href="https://meralion.org/demo/">💻 Web Demo</a> |
<a href="https://huggingface.co/MERaLiON/MERaLiON-2-10B/blob/main/vllm_plugin_meralion2/readme.md">⚙️ vLLM</a>
</p>
## Introduction
We are pleased to announce the release of **MERaLiON2**, the latest addition to the MERaLiON family of speech-text large language models. Our flagship model, [**MERaLiON-2-10B**](https://huggingface.co/MERaLiON/MERaLiON-2-10B), demonstrates competitive performance across benchmark evaluations in tasks such as multilingual automatic speech recognition (ASR), speech translation (ST), audio scene understanding, emotion recognition, and general speech comprehension. These results are comparable to those achieved by other state-of-the-art open-source AudioLLMs, including Qwen2.5-Omni-7B and Phi-4-multimodal-instruct.
MERaLiON-2-10B is specifically designed to follow complex instructions with a nuanced understanding of **Singapore’s multilingual and multicultural context**. It integrates a localized Whisper-large-v3 speech encoder and Gemma-2-9b text decoder. The following graph presents task-specific evaluation scores, assessed using the **LLM-as-a-Judge** framework across multiple datasets. For the speech translation task, performance is measured using the BLEU metric, where higher scores indicate better translation quality.
<img src="radar_task.png" alt="model_capability" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
In addition, we introduce an ASR-optimized variant, [**MERaLiON-2-10B-ASR**](https://huggingface.co/MERaLiON/MERaLiON-2-10B-ASR), which delivers a **5–30%** performance improvement over OpenAI’s `whisper-large-v3` on speech recognition tasks. This enhancement spans Singapore’s 4 official languages—**English**, **Mandarin**, **Malay**, and **Tamil**—as well as 3 South-East Asian languages: **Indonesian**, **Thai**, and **Vietnamese**. The model also demonstrates robust handling of **code-switching scenarios** and local colloquialisms, reflecting its adaptability to Singapore’s diverse linguistic landscape.
The following visualization illustrates the **1 - Word Error Rate (WER)** metric across these seven languages, comparing MERaLiON-2-10B-ASR with other leading models. A higher value indicates better transcription accuracy.
<img src="radar_asr.png" alt="model_capability" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
We also provide [MERaLiON-2-3B](https://huggingface.co/MERaLiON/MERaLiON-2-3B) that balances performance with reduced computational requirements, enabling broader accessibility and lightweight deployment.
- **Extended Audio Length**: Support audio inputs up to 300 seconds (5 minutes) for audio & speech question answering tasks, **30s for a satisfactory performance for speech transcription (ASR) and speech translation (ST) tasks**.
- **Expanded Language Coverage**: In addition to English, Chinese, and Singlish, V2 introduces support for Malay, Tamil, and other South-East Asia languages including Indonesian, Thai, and Vietnamese.
- **Improved Performance**: Achieves higher performance across a wide range of tasks. See the [Evaluation](#performance) section for detailed benchmarks.
- **Higher Quality Training Data**: Trained on 120,000 hours of curated speech and audio data, filtered for quality and diversity, with an emphasis on local and multilingual audio sources.
- **Three Model Variants**: Available in general-purpose ([MERaLiON-2-10B](https://huggingface.co/MERaLiON/MERaLiON-2-10B)), ASR-optimized ([MERaLiON-2-10B-ASR](https://huggingface.co/MERaLiON/MERaLiON-2-10B-ASR)) and light-weight ([MERaLiON-2-3B](https://huggingface.co/MERaLiON/MERaLiON-2-3B)) configurations to balance latency, compute efficiency, and task performance across different deployment needs.
## Model Description:
MERaLiON stands for **M**ultimodal **E**mpathetic **R**easoning **a**nd **L**earning **i**n **O**ne **N**etwork.
MERaLiON-2 is a family of Speech-Text Large Language Models tailored for **Singapore’s multilingual and multicultural landscape**, as well as the wider **Southeast Asian region**.
The 10B model integrates a localized [Whisper-Large-V3](https://huggingface.co/openai/whisper-large-v3) speech encoder with the [Gemma2-9b-IT](https://huggingface.co/google/gemma-2-9b-it) text decoder.
The 3B model integrates a localized [Whisper-Large-V3](https://huggingface.co/openai/whisper-large-v3) speech encoder with the [Gemma2-2b-IT](https://huggingface.co/google/gemma-2-2b-it) text decoder.
MERaLiON-2-10B is finetuned on **120,000 hours of speech and audio data** across **6 diverse tasks**: Automatic Speech Recognition (ASR), Spoken Question Answering (SQA), Spoken Dialogue Summarization (SDS), Audio Captioning (AC), Audio-Scene Question Answering (ASQA) and Paralinguistic Question Answering (PQA).
The model supports long-form audio inputs of up to 300 seconds (5 minutes) and is specifically adapted to handle the linguistic nuances, accents, and dialects commonly found across Singapore and neighboring countries.
- **Developed by:** I<sup>2</sup>R, A\*STAR, Singapore
- **Model type:** Multimodal LLM
- **Language(s):** Primarily English (Global and Singapore), Chinese, with support for audio of regional languages including Malay, Tamil, Indonesian, Thai, and Vietnamese.
- **Audio:** **Mono** channel audio, **16000** hz, up to **300** seconds.
- **License:** [MERaLiON Public License](MERaLiON-Public-Licence-v2.pdf)
- **Demo:** [MERaLiON-AudioLLM Web Demo](https://meralion.org/demo/)
**MERaLiON-2** is an upgraded version of [MERaLiON-AudioLLM](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION).
## Performance:
We benchmark MERaLiON-2 series models with extended [AudioBench benchmark](https://huggingface.co/spaces/MERaLiON/AudioBench-Leaderboard) against several recently released open-source multimodal models — SALMONN-7B, Qwen2.5-Omni series and Phi-4-Multimodal — as well as two cascade model.
**Better Automatic Speech Recognition (ASR) Accuracy**
MERaLiON-2-10B-ASR and MERaLiON-2-10B demonstrate leading performance in Singlish, Mandarin, Malay, Tamil, and other Southeast Asian languages, while maintaining competitive results in English compared to `Whisper-large-v3`. The following table shows the average transcription `Word Error Rate` by language for the MERaLiON family and other leading AudioLLMs. The `Private Dataset` includes a collection of Singapore's locally accented speeches with code-switch.
Please visit [AudioBench benchmark](https://huggingface.co/spaces/MERaLiON/AudioBench-Leaderboard) for dataset-level evaluation results.
<style type="text/css">
#T_0910c th {
text-align: center;
}
#T_0910c_row0_col0, #T_0910c_row1_col0, #T_0910c_row2_col0, #T_0910c_row3_col0, #T_0910c_row4_col0, #T_0910c_row5_col0, #T_0910c_row6_col7, #T_0910c_row7_col0, #T_0910c_row8_col0 {
font-weight: bold;
text-decoration: underline;
text-align: center;
}
#T_0910c_row0_col1, #T_0910c_row1_col1, #T_0910c_row2_col1, #T_0910c_row3_col1, #T_0910c_row4_col1, #T_0910c_row5_col1, #T_0910c_row6_col1, #T_0910c_row7_col1, #T_0910c_row8_col1 {
text-align: center;
}
#T_0910c_row0_col2, #T_0910c_row0_col3, #T_0910c_row0_col4, #T_0910c_row0_col5, #T_0910c_row0_col6, #T_0910c_row0_col7, #T_0910c_row0_col8, #T_0910c_row0_col9, #T_0910c_row0_col10, #T_0910c_row0_col11, #T_0910c_row1_col2, #T_0910c_row1_col3, #T_0910c_row1_col4, #T_0910c_row1_col5, #T_0910c_row1_col6, #T_0910c_row1_col7, #T_0910c_row1_col8, #T_0910c_row1_col9, #T_0910c_row1_col10, #T_0910c_row1_col11, #T_0910c_row2_col2, #T_0910c_row2_col3, #T_0910c_row2_col4, #T_0910c_row2_col5, #T_0910c_row2_col6, #T_0910c_row2_col7, #T_0910c_row2_col8, #T_0910c_row2_col9, #T_0910c_row2_col10, #T_0910c_row2_col11, #T_0910c_row3_col2, #T_0910c_row3_col3, #T_0910c_row3_col4, #T_0910c_row3_col5, #T_0910c_row3_col6, #T_0910c_row3_col7, #T_0910c_row3_col8, #T_0910c_row3_col9, #T_0910c_row3_col10, #T_0910c_row3_col11, #T_0910c_row4_col2, #T_0910c_row4_col3, #T_0910c_row4_col4, #T_0910c_row4_col5, #T_0910c_row4_col6, #T_0910c_row4_col7, #T_0910c_row4_col8, #T_0910c_row4_col9, #T_0910c_row4_col10, #T_0910c_row4_col11, #T_0910c_row5_col2, #T_0910c_row5_col3, #T_0910c_row5_col4, #T_0910c_row5_col5, #T_0910c_row5_col6, #T_0910c_row5_col7, #T_0910c_row5_col8, #T_0910c_row5_col9, #T_0910c_row5_col10, #T_0910c_row5_col11, #T_0910c_row6_col0, #T_0910c_row6_col2, #T_0910c_row6_col3, #T_0910c_row6_col4, #T_0910c_row6_col5, #T_0910c_row6_col6, #T_0910c_row6_col8, #T_0910c_row6_col9, #T_0910c_row6_col10, #T_0910c_row6_col11, #T_0910c_row7_col2, #T_0910c_row7_col3, #T_0910c_row7_col4, #T_0910c_row7_col5, #T_0910c_row7_col6, #T_0910c_row7_col7, #T_0910c_row7_col8, #T_0910c_row7_col9, #T_0910c_row7_col10, #T_0910c_row7_col11, #T_0910c_row8_col2, #T_0910c_row8_col3, #T_0910c_row8_col4, #T_0910c_row8_col5, #T_0910c_row8_col6, #T_0910c_row8_col7, #T_0910c_row8_col8, #T_0910c_row8_col9, #T_0910c_row8_col10, #T_0910c_row8_col11 {
text-align: center;
}
</style>
<table id="T_0910c">
<thead>
<tr>
<th class="blank level0" > </th>
<th id="T_0910c_level0_col0" class="col_heading level0 col0" >MERaLiON-2-10B-ASR</th>
<th id="T_0910c_level0_col1" class="col_heading level0 col1" >MERaLiON-2-10B</th>
<th id="T_0910c_level0_col2" class="col_heading level0 col2" >MERaLiON-2-3B</th>
<th id="T_0910c_level0_col3" class="col_heading level0 col3" >whisper_large_v3</th>
<th id="T_0910c_level0_col4" class="col_heading level0 col4" >cascade-whisper_large_v3-llama_3_8b_instruct</th>
<th id="T_0910c_level0_col5" class="col_heading level0 col5" >cascade-whisper_large_v2-gemma2_9b_cpt-sea_lionv3_instruct</th>
<th id="T_0910c_level0_col6" class="col_heading level0 col6" >MERaLiON-AudioLLM-Whisper-SEA-LION</th>
<th id="T_0910c_level0_col7" class="col_heading level0 col7" >Qwen2.5-Omni-7B</th>
<th id="T_0910c_level0_col8" class="col_heading level0 col8" >SeaLLMs-Audio-7B</th>
<th id="T_0910c_level0_col9" class="col_heading level0 col9" >Qwen2.5-Omni-3B</th>
<th id="T_0910c_level0_col10" class="col_heading level0 col10" >SALMONN_7B</th>
<th id="T_0910c_level0_col11" class="col_heading level0 col11" >phi_4_multimodal_instruct</th>
</tr>
</thead>
<tbody>
<tr>
<th id="T_0910c_level0_row0" class="row_heading level0 row0" >Thai</th>
<td id="T_0910c_row0_col0" class="data row0 col0" >0.096526</td>
<td id="T_0910c_row0_col1" class="data row0 col1" >0.109365</td>
<td id="T_0910c_row0_col2" class="data row0 col2" >0.107279</td>
<td id="T_0910c_row0_col3" class="data row0 col3" >0.121073</td>
<td id="T_0910c_row0_col4" class="data row0 col4" >0.120257</td>
<td id="T_0910c_row0_col5" class="data row0 col5" >0.172105</td>
<td id="T_0910c_row0_col6" class="data row0 col6" >0.919330</td>
<td id="T_0910c_row0_col7" class="data row0 col7" >0.126497</td>
<td id="T_0910c_row0_col8" class="data row0 col8" >0.117152</td>
<td id="T_0910c_row0_col9" class="data row0 col9" >0.163150</td>
<td id="T_0910c_row0_col10" class="data row0 col10" >1.191099</td>
<td id="T_0910c_row0_col11" class="data row0 col11" >1.510068</td>
</tr>
<tr>
<th id="T_0910c_level0_row1" class="row_heading level0 row1" >Tamil</th>
<td id="T_0910c_row1_col0" class="data row1 col0" >0.271279</td>
<td id="T_0910c_row1_col1" class="data row1 col1" >0.327081</td>
<td id="T_0910c_row1_col2" class="data row1 col2" >0.344081</td>
<td id="T_0910c_row1_col3" class="data row1 col3" >0.441483</td>
<td id="T_0910c_row1_col4" class="data row1 col4" >0.475225</td>
<td id="T_0910c_row1_col5" class="data row1 col5" >0.492336</td>
<td id="T_0910c_row1_col6" class="data row1 col6" >0.561315</td>
<td id="T_0910c_row1_col7" class="data row1 col7" >1.024916</td>
<td id="T_0910c_row1_col8" class="data row1 col8" >2.325402</td>
<td id="T_0910c_row1_col9" class="data row1 col9" >1.315143</td>
<td id="T_0910c_row1_col10" class="data row1 col10" >1.306694</td>
<td id="T_0910c_row1_col11" class="data row1 col11" >1.876722</td>
</tr>
<tr>
<th id="T_0910c_level0_row2" class="row_heading level0 row2" >Singlish</th>
<td id="T_0910c_row2_col0" class="data row2 col0" >0.129830</td>
<td id="T_0910c_row2_col1" class="data row2 col1" >0.168813</td>
<td id="T_0910c_row2_col2" class="data row2 col2" >0.180395</td>
<td id="T_0910c_row2_col3" class="data row2 col3" >0.248945</td>
<td id="T_0910c_row2_col4" class="data row2 col4" >0.251608</td>
<td id="T_0910c_row2_col5" class="data row2 col5" >0.255717</td>
<td id="T_0910c_row2_col6" class="data row2 col6" >0.143800</td>
<td id="T_0910c_row2_col7" class="data row2 col7" >0.439071</td>
<td id="T_0910c_row2_col8" class="data row2 col8" >0.795990</td>
<td id="T_0910c_row2_col9" class="data row2 col9" >0.389393</td>
<td id="T_0910c_row2_col10" class="data row2 col10" >0.441490</td>
<td id="T_0910c_row2_col11" class="data row2 col11" >0.448863</td>
</tr>
<tr>
<th id="T_0910c_level0_row3" class="row_heading level0 row3" >Malay</th>
<td id="T_0910c_row3_col0" class="data row3 col0" >0.194638</td>
<td id="T_0910c_row3_col1" class="data row3 col1" >0.209074</td>
<td id="T_0910c_row3_col2" class="data row3 col2" >0.279891</td>
<td id="T_0910c_row3_col3" class="data row3 col3" >0.219692</td>
<td id="T_0910c_row3_col4" class="data row3 col4" >0.311921</td>
<td id="T_0910c_row3_col5" class="data row3 col5" >0.314378</td>
<td id="T_0910c_row3_col6" class="data row3 col6" >0.289895</td>
<td id="T_0910c_row3_col7" class="data row3 col7" >1.460664</td>
<td id="T_0910c_row3_col8" class="data row3 col8" >0.765565</td>
<td id="T_0910c_row3_col9" class="data row3 col9" >2.943750</td>
<td id="T_0910c_row3_col10" class="data row3 col10" >1.085867</td>
<td id="T_0910c_row3_col11" class="data row3 col11" >3.762933</td>
</tr>
<tr>
<th id="T_0910c_level0_row4" class="row_heading level0 row4" >English</th>
<td id="T_0910c_row4_col0" class="data row4 col0" >0.078544</td>
<td id="T_0910c_row4_col1" class="data row4 col1" >0.088259</td>
<td id="T_0910c_row4_col2" class="data row4 col2" >0.122295</td>
<td id="T_0910c_row4_col3" class="data row4 col3" >0.080841</td>
<td id="T_0910c_row4_col4" class="data row4 col4" >0.081568</td>
<td id="T_0910c_row4_col5" class="data row4 col5" >0.104830</td>
<td id="T_0910c_row4_col6" class="data row4 col6" >0.110567</td>
<td id="T_0910c_row4_col7" class="data row4 col7" >0.134216</td>
<td id="T_0910c_row4_col8" class="data row4 col8" >0.197824</td>
<td id="T_0910c_row4_col9" class="data row4 col9" >0.110353</td>
<td id="T_0910c_row4_col10" class="data row4 col10" >0.191492</td>
<td id="T_0910c_row4_col11" class="data row4 col11" >0.098225</td>
</tr>
<tr>
<th id="T_0910c_level0_row5" class="row_heading level0 row5" >Indonesian</th>
<td id="T_0910c_row5_col0" class="data row5 col0" >0.121020</td>
<td id="T_0910c_row5_col1" class="data row5 col1" >0.142813</td>
<td id="T_0910c_row5_col2" class="data row5 col2" >0.131950</td>
<td id="T_0910c_row5_col3" class="data row5 col3" >0.137102</td>
<td id="T_0910c_row5_col4" class="data row5 col4" >0.135390</td>
<td id="T_0910c_row5_col5" class="data row5 col5" >0.159476</td>
<td id="T_0910c_row5_col6" class="data row5 col6" >0.298365</td>
<td id="T_0910c_row5_col7" class="data row5 col7" >0.168659</td>
<td id="T_0910c_row5_col8" class="data row5 col8" >0.220227</td>
<td id="T_0910c_row5_col9" class="data row5 col9" >0.205216</td>
<td id="T_0910c_row5_col10" class="data row5 col10" >1.653502</td>
<td id="T_0910c_row5_col11" class="data row5 col11" >3.565510</td>
</tr>
<tr>
<th id="T_0910c_level0_row6" class="row_heading level0 row6" >Mandarian</th>
<td id="T_0910c_row6_col0" class="data row6 col0" >0.103694</td>
<td id="T_0910c_row6_col1" class="data row6 col1" >0.132025</td>
<td id="T_0910c_row6_col2" class="data row6 col2" >0.145878</td>
<td id="T_0910c_row6_col3" class="data row6 col3" >0.170980</td>
<td id="T_0910c_row6_col4" class="data row6 col4" >0.196867</td>
<td id="T_0910c_row6_col5" class="data row6 col5" >0.291733</td>
<td id="T_0910c_row6_col6" class="data row6 col6" >0.291183</td>
<td id="T_0910c_row6_col7" class="data row6 col7" >0.102419</td>
<td id="T_0910c_row6_col8" class="data row6 col8" >0.309782</td>
<td id="T_0910c_row6_col9" class="data row6 col9" >0.130429</td>
<td id="T_0910c_row6_col10" class="data row6 col10" >0.939545</td>
<td id="T_0910c_row6_col11" class="data row6 col11" >0.238879</td>
</tr>
<tr>
<th id="T_0910c_level0_row7" class="row_heading level0 row7" >Vietnamese</th>
<td id="T_0910c_row7_col0" class="data row7 col0" >0.118693</td>
<td id="T_0910c_row7_col1" class="data row7 col1" >0.134808</td>
<td id="T_0910c_row7_col2" class="data row7 col2" >0.155110</td>
<td id="T_0910c_row7_col3" class="data row7 col3" >0.148474</td>
<td id="T_0910c_row7_col4" class="data row7 col4" >0.136075</td>
<td id="T_0910c_row7_col5" class="data row7 col5" >0.164078</td>
<td id="T_0910c_row7_col6" class="data row7 col6" >0.952040</td>
<td id="T_0910c_row7_col7" class="data row7 col7" >0.205491</td>
<td id="T_0910c_row7_col8" class="data row7 col8" >0.222001</td>
<td id="T_0910c_row7_col9" class="data row7 col9" >0.186786</td>
<td id="T_0910c_row7_col10" class="data row7 col10" >1.521174</td>
<td id="T_0910c_row7_col11" class="data row7 col11" >1.805643</td>
</tr>
<tr>
<th id="T_0910c_level0_row8" class="row_heading level0 row8" >Private Dataset</th>
<td id="T_0910c_row8_col0" class="data row8 col0" >0.106150</td>
<td id="T_0910c_row8_col1" class="data row8 col1" >0.112360</td>
<td id="T_0910c_row8_col2" class="data row8 col2" >0.147258</td>
<td id="T_0910c_row8_col3" class="data row8 col3" >0.116630</td>
<td id="T_0910c_row8_col4" class="data row8 col4" >0.118434</td>
<td id="T_0910c_row8_col5" class="data row8 col5" >0.143812</td>
<td id="T_0910c_row8_col6" class="data row8 col6" >0.130667</td>
<td id="T_0910c_row8_col7" class="data row8 col7" >0.222770</td>
<td id="T_0910c_row8_col8" class="data row8 col8" >0.496540</td>
<td id="T_0910c_row8_col9" class="data row8 col9" >0.164556</td>
<td id="T_0910c_row8_col10" class="data row8 col10" >0.273304</td>
<td id="T_0910c_row8_col11" class="data row8 col11" >0.229450</td>
</tr>
</tbody>
</table>
**Better Instruction Following and Audio Understanding**
**MERaLiON-2-10B** exhibits substantial advancements in speech and audio understanding, as well as paralinguistic tasks. Notably, it adeptly handles complex instructions and responds with enhanced flexibility, effectively preserving the pre-trained knowledge from Gemma during the audio fine-tuning process. This capability enables MERaLiON-2-10B to provide detailed explanations regarding speech content and the speaker's emotional state. Furthermore, with appropriate prompt adjustments, the model can assume various roles, such as a voice assistant, virtual caregiver, or an integral component of sophisticated multi-agent AI systems and software solutions.
Please visit [AudioBench benchmark](https://huggingface.co/spaces/MERaLiON/AudioBench-Leaderboard) for dataset-level evaluation results.
<style type="text/css">
#T_b6ba8 th {
text-align: center;
}
#T_b6ba8_row0_col0, #T_b6ba8_row2_col0, #T_b6ba8_row3_col0, #T_b6ba8_row5_col0, #T_b6ba8_row6_col0, #T_b6ba8_row8_col0, #T_b6ba8_row9_col0, #T_b6ba8_row10_col0 {
text-align: center;
}
#T_b6ba8_row0_col1, #T_b6ba8_row0_col2, #T_b6ba8_row0_col3, #T_b6ba8_row0_col4, #T_b6ba8_row0_col5, #T_b6ba8_row0_col6, #T_b6ba8_row0_col7, #T_b6ba8_row0_col8, #T_b6ba8_row0_col9, #T_b6ba8_row0_col11, #T_b6ba8_row0_col12, #T_b6ba8_row0_col13, #T_b6ba8_row1_col1, #T_b6ba8_row1_col2, #T_b6ba8_row1_col3, #T_b6ba8_row1_col4, #T_b6ba8_row1_col5, #T_b6ba8_row1_col6, #T_b6ba8_row1_col7, #T_b6ba8_row1_col8, #T_b6ba8_row1_col9, #T_b6ba8_row1_col10, #T_b6ba8_row1_col11, #T_b6ba8_row1_col12, #T_b6ba8_row1_col13, #T_b6ba8_row2_col2, #T_b6ba8_row2_col3, #T_b6ba8_row2_col4, #T_b6ba8_row2_col5, #T_b6ba8_row2_col6, #T_b6ba8_row2_col7, #T_b6ba8_row2_col8, #T_b6ba8_row2_col9, #T_b6ba8_row2_col10, #T_b6ba8_row2_col11, #T_b6ba8_row2_col12, #T_b6ba8_row2_col13, #T_b6ba8_row3_col1, #T_b6ba8_row3_col3, #T_b6ba8_row3_col4, #T_b6ba8_row3_col5, #T_b6ba8_row3_col6, #T_b6ba8_row3_col7, #T_b6ba8_row3_col8, #T_b6ba8_row3_col9, #T_b6ba8_row3_col10, #T_b6ba8_row3_col11, #T_b6ba8_row3_col12, #T_b6ba8_row3_col13, #T_b6ba8_row4_col1, #T_b6ba8_row4_col2, #T_b6ba8_row4_col3, #T_b6ba8_row4_col4, #T_b6ba8_row4_col5, #T_b6ba8_row4_col6, #T_b6ba8_row4_col7, #T_b6ba8_row4_col8, #T_b6ba8_row4_col9, #T_b6ba8_row4_col10, #T_b6ba8_row4_col11, #T_b6ba8_row4_col12, #T_b6ba8_row4_col13, #T_b6ba8_row5_col1, #T_b6ba8_row5_col2, #T_b6ba8_row5_col3, #T_b6ba8_row5_col5, #T_b6ba8_row5_col6, #T_b6ba8_row5_col7, #T_b6ba8_row5_col8, #T_b6ba8_row5_col9, #T_b6ba8_row5_col10, #T_b6ba8_row5_col11, #T_b6ba8_row5_col12, #T_b6ba8_row5_col13, #T_b6ba8_row6_col1, #T_b6ba8_row6_col3, #T_b6ba8_row6_col4, #T_b6ba8_row6_col5, #T_b6ba8_row6_col6, #T_b6ba8_row6_col7, #T_b6ba8_row6_col8, #T_b6ba8_row6_col9, #T_b6ba8_row6_col10, #T_b6ba8_row6_col11, #T_b6ba8_row6_col12, #T_b6ba8_row6_col13, #T_b6ba8_row7_col1, #T_b6ba8_row7_col2, #T_b6ba8_row7_col3, #T_b6ba8_row7_col4, #T_b6ba8_row7_col5, #T_b6ba8_row7_col6, #T_b6ba8_row7_col7, #T_b6ba8_row7_col8, #T_b6ba8_row7_col9, #T_b6ba8_row7_col10, #T_b6ba8_row7_col11, #T_b6ba8_row7_col12, #T_b6ba8_row7_col13, #T_b6ba8_row8_col1, #T_b6ba8_row8_col2, #T_b6ba8_row8_col3, #T_b6ba8_row8_col4, #T_b6ba8_row8_col6, #T_b6ba8_row8_col7, #T_b6ba8_row8_col8, #T_b6ba8_row8_col9, #T_b6ba8_row8_col10, #T_b6ba8_row8_col11, #T_b6ba8_row8_col12, #T_b6ba8_row8_col13, #T_b6ba8_row9_col1, #T_b6ba8_row9_col2, #T_b6ba8_row9_col4, #T_b6ba8_row9_col5, #T_b6ba8_row9_col6, #T_b6ba8_row9_col7, #T_b6ba8_row9_col8, #T_b6ba8_row9_col9, #T_b6ba8_row9_col10, #T_b6ba8_row9_col11, #T_b6ba8_row9_col12, #T_b6ba8_row9_col13, #T_b6ba8_row10_col1, #T_b6ba8_row10_col3, #T_b6ba8_row10_col4, #T_b6ba8_row10_col5, #T_b6ba8_row10_col6, #T_b6ba8_row10_col7, #T_b6ba8_row10_col8, #T_b6ba8_row10_col9, #T_b6ba8_row10_col10, #T_b6ba8_row10_col11, #T_b6ba8_row10_col12, #T_b6ba8_row10_col13 {
text-align: center;
}
#T_b6ba8_row0_col10, #T_b6ba8_row2_col1, #T_b6ba8_row3_col2, #T_b6ba8_row5_col4, #T_b6ba8_row6_col2, #T_b6ba8_row8_col5, #T_b6ba8_row9_col3, #T_b6ba8_row10_col2 {
font-weight: bold;
text-decoration: underline;
text-align: center;
}
#T_b6ba8_row1_col0, #T_b6ba8_row4_col0, #T_b6ba8_row7_col0 {
font-weight: bold;
text-decoration: underline;
text-align: center;
}
</style>
<table id="T_b6ba8">
<thead>
<tr>
<th class="blank level0" > </th>
<th id="T_b6ba8_level0_col0" class="col_heading level0 col0" >MERaLiON-2-10B</th>
<th id="T_b6ba8_level0_col1" class="col_heading level0 col1" >MERaLiON-AudioLLM-Whisper-SEA-LION</th>
<th id="T_b6ba8_level0_col2" class="col_heading level0 col2" >MERaLiON-2-10B-ASR</th>
<th id="T_b6ba8_level0_col3" class="col_heading level0 col3" >MERaLiON-2-3B</th>
<th id="T_b6ba8_level0_col4" class="col_heading level0 col4" >SeaLLMs-Audio-7B</th>
<th id="T_b6ba8_level0_col5" class="col_heading level0 col5" >Qwen2-Audio-7B-Instruct</th>
<th id="T_b6ba8_level0_col6" class="col_heading level0 col6" >Qwen2.5-Omni-3B</th>
<th id="T_b6ba8_level0_col7" class="col_heading level0 col7" >phi_4_multimodal_instruct</th>
<th id="T_b6ba8_level0_col8" class="col_heading level0 col8" >cascade-whisper_large_v3-llama_3_8b_instruct</th>
<th id="T_b6ba8_level0_col9" class="col_heading level0 col9" >Qwen2.5-Omni-7B</th>
<th id="T_b6ba8_level0_col10" class="col_heading level0 col10" >cascade-whisper_large_v2-gemma2_9b_cpt-sea_lionv3_instruct</th>
<th id="T_b6ba8_level0_col11" class="col_heading level0 col11" >Qwen-Audio-Chat</th>
<th id="T_b6ba8_level0_col12" class="col_heading level0 col12" >SALMONN_7B</th>
<th id="T_b6ba8_level0_col13" class="col_heading level0 col13" >WavLLM_fairseq</th>
</tr>
</thead>
<tbody>
<tr>
<th id="T_b6ba8_level0_row0" class="row_heading level0 row0" >Speech Instruction</th>
<td id="T_b6ba8_row0_col0" class="data row0 col0" >70.200000</td>
<td id="T_b6ba8_row0_col1" class="data row0 col1" >70.800000</td>
<td id="T_b6ba8_row0_col2" class="data row0 col2" >13.400000</td>
<td id="T_b6ba8_row0_col3" class="data row0 col3" >19.100000</td>
<td id="T_b6ba8_row0_col4" class="data row0 col4" >66.900000</td>
<td id="T_b6ba8_row0_col5" class="data row0 col5" >48.700000</td>
<td id="T_b6ba8_row0_col6" class="data row0 col6" >65.000000</td>
<td id="T_b6ba8_row0_col7" class="data row0 col7" >36.200000</td>
<td id="T_b6ba8_row0_col8" class="data row0 col8" >66.100000</td>
<td id="T_b6ba8_row0_col9" class="data row0 col9" >58.300000</td>
<td id="T_b6ba8_row0_col10" class="data row0 col10" >72.900000</td>
<td id="T_b6ba8_row0_col11" class="data row0 col11" >10.200000</td>
<td id="T_b6ba8_row0_col12" class="data row0 col12" >12.900000</td>
<td id="T_b6ba8_row0_col13" class="data row0 col13" >20.400000</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row1" class="row_heading level0 row1" >Emotion Recognition</th>
<td id="T_b6ba8_row1_col0" class="data row1 col0" >63.736268</td>
<td id="T_b6ba8_row1_col1" class="data row1 col1" >48.577313</td>
<td id="T_b6ba8_row1_col2" class="data row1 col2" >53.693298</td>
<td id="T_b6ba8_row1_col3" class="data row1 col3" >54.040797</td>
<td id="T_b6ba8_row1_col4" class="data row1 col4" >52.007576</td>
<td id="T_b6ba8_row1_col5" class="data row1 col5" >49.846540</td>
<td id="T_b6ba8_row1_col6" class="data row1 col6" >33.037836</td>
<td id="T_b6ba8_row1_col7" class="data row1 col7" >40.677800</td>
<td id="T_b6ba8_row1_col8" class="data row1 col8" >50.937578</td>
<td id="T_b6ba8_row1_col9" class="data row1 col9" >31.469397</td>
<td id="T_b6ba8_row1_col10" class="data row1 col10" >48.214969</td>
<td id="T_b6ba8_row1_col11" class="data row1 col11" >41.671551</td>
<td id="T_b6ba8_row1_col12" class="data row1 col12" >33.584869</td>
<td id="T_b6ba8_row1_col13" class="data row1 col13" >50.801545</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row2" class="row_heading level0 row2" >Audio Scene Question Answering</th>
<td id="T_b6ba8_row2_col0" class="data row2 col0" >51.140374</td>
<td id="T_b6ba8_row2_col1" class="data row2 col1" >52.207756</td>
<td id="T_b6ba8_row2_col2" class="data row2 col2" >49.511886</td>
<td id="T_b6ba8_row2_col3" class="data row2 col3" >46.141353</td>
<td id="T_b6ba8_row2_col4" class="data row2 col4" >50.193739</td>
<td id="T_b6ba8_row2_col5" class="data row2 col5" >47.048025</td>
<td id="T_b6ba8_row2_col6" class="data row2 col6" >48.123228</td>
<td id="T_b6ba8_row2_col7" class="data row2 col7" >42.217143</td>
<td id="T_b6ba8_row2_col8" class="data row2 col8" >21.876943</td>
<td id="T_b6ba8_row2_col9" class="data row2 col9" >45.669153</td>
<td id="T_b6ba8_row2_col10" class="data row2 col10" >18.043681</td>
<td id="T_b6ba8_row2_col11" class="data row2 col11" >51.618622</td>
<td id="T_b6ba8_row2_col12" class="data row2 col12" >51.816958</td>
<td id="T_b6ba8_row2_col13" class="data row2 col13" >33.034083</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row3" class="row_heading level0 row3" >Gender Recognition</th>
<td id="T_b6ba8_row3_col0" class="data row3 col0" >95.109423</td>
<td id="T_b6ba8_row3_col1" class="data row3 col1" >97.177396</td>
<td id="T_b6ba8_row3_col2" class="data row3 col2" >97.220335</td>
<td id="T_b6ba8_row3_col3" class="data row3 col3" >93.810266</td>
<td id="T_b6ba8_row3_col4" class="data row3 col4" >75.449392</td>
<td id="T_b6ba8_row3_col5" class="data row3 col5" >95.963266</td>
<td id="T_b6ba8_row3_col6" class="data row3 col6" >47.867210</td>
<td id="T_b6ba8_row3_col7" class="data row3 col7" >70.718047</td>
<td id="T_b6ba8_row3_col8" class="data row3 col8" >57.039409</td>
<td id="T_b6ba8_row3_col9" class="data row3 col9" >48.724711</td>
<td id="T_b6ba8_row3_col10" class="data row3 col10" >19.421130</td>
<td id="T_b6ba8_row3_col11" class="data row3 col11" >60.349349</td>
<td id="T_b6ba8_row3_col12" class="data row3 col12" >84.365092</td>
<td id="T_b6ba8_row3_col13" class="data row3 col13" >60.773275</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row4" class="row_heading level0 row4" >Spoken QA (Singlish)</th>
<td id="T_b6ba8_row4_col0" class="data row4 col0" >66.550000</td>
<td id="T_b6ba8_row4_col1" class="data row4 col1" >58.900000</td>
<td id="T_b6ba8_row4_col2" class="data row4 col2" >61.850000</td>
<td id="T_b6ba8_row4_col3" class="data row4 col3" >59.700000</td>
<td id="T_b6ba8_row4_col4" class="data row4 col4" >51.350000</td>
<td id="T_b6ba8_row4_col5" class="data row4 col5" >46.700000</td>
<td id="T_b6ba8_row4_col6" class="data row4 col6" >60.500000</td>
<td id="T_b6ba8_row4_col7" class="data row4 col7" >61.950000</td>
<td id="T_b6ba8_row4_col8" class="data row4 col8" >59.350000</td>
<td id="T_b6ba8_row4_col9" class="data row4 col9" >58.400000</td>
<td id="T_b6ba8_row4_col10" class="data row4 col10" >53.750000</td>
<td id="T_b6ba8_row4_col11" class="data row4 col11" >42.300000</td>
<td id="T_b6ba8_row4_col12" class="data row4 col12" >43.200000</td>
<td id="T_b6ba8_row4_col13" class="data row4 col13" >51.200000</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row5" class="row_heading level0 row5" >Audio Captioning</th>
<td id="T_b6ba8_row5_col0" class="data row5 col0" >35.604270</td>
<td id="T_b6ba8_row5_col1" class="data row5 col1" >36.976419</td>
<td id="T_b6ba8_row5_col2" class="data row5 col2" >34.466710</td>
<td id="T_b6ba8_row5_col3" class="data row5 col3" >33.243839</td>
<td id="T_b6ba8_row5_col4" class="data row5 col4" >45.089372</td>
<td id="T_b6ba8_row5_col5" class="data row5 col5" >37.278810</td>
<td id="T_b6ba8_row5_col6" class="data row5 col6" >39.200328</td>
<td id="T_b6ba8_row5_col7" class="data row5 col7" >30.832409</td>
<td id="T_b6ba8_row5_col8" class="data row5 col8" >2.915778</td>
<td id="T_b6ba8_row5_col9" class="data row5 col9" >31.896243</td>
<td id="T_b6ba8_row5_col10" class="data row5 col10" >3.140568</td>
<td id="T_b6ba8_row5_col11" class="data row5 col11" >39.988663</td>
<td id="T_b6ba8_row5_col12" class="data row5 col12" >28.880570</td>
<td id="T_b6ba8_row5_col13" class="data row5 col13" >6.200867</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row6" class="row_heading level0 row6" >Spoken Dialogue Summarisation</th>
<td id="T_b6ba8_row6_col0" class="data row6 col0" >53.100000</td>
<td id="T_b6ba8_row6_col1" class="data row6 col1" >53.600000</td>
<td id="T_b6ba8_row6_col2" class="data row6 col2" >55.800000</td>
<td id="T_b6ba8_row6_col3" class="data row6 col3" >48.550000</td>
<td id="T_b6ba8_row6_col4" class="data row6 col4" >45.450000</td>
<td id="T_b6ba8_row6_col5" class="data row6 col5" >36.300000</td>
<td id="T_b6ba8_row6_col6" class="data row6 col6" >46.750000</td>
<td id="T_b6ba8_row6_col7" class="data row6 col7" >50.750000</td>
<td id="T_b6ba8_row6_col8" class="data row6 col8" >45.850000</td>
<td id="T_b6ba8_row6_col9" class="data row6 col9" >43.150000</td>
<td id="T_b6ba8_row6_col10" class="data row6 col10" >51.000000</td>
<td id="T_b6ba8_row6_col11" class="data row6 col11" >25.250000</td>
<td id="T_b6ba8_row6_col12" class="data row6 col12" >14.400000</td>
<td id="T_b6ba8_row6_col13" class="data row6 col13" >39.450000</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row7" class="row_heading level0 row7" >Spoken QA (English)</th>
<td id="T_b6ba8_row7_col0" class="data row7 col0" >79.735049</td>
<td id="T_b6ba8_row7_col1" class="data row7 col1" >63.711481</td>
<td id="T_b6ba8_row7_col2" class="data row7 col2" >73.975834</td>
<td id="T_b6ba8_row7_col3" class="data row7 col3" >68.715179</td>
<td id="T_b6ba8_row7_col4" class="data row7 col4" >70.920519</td>
<td id="T_b6ba8_row7_col5" class="data row7 col5" >68.888565</td>
<td id="T_b6ba8_row7_col6" class="data row7 col6" >67.818546</td>
<td id="T_b6ba8_row7_col7" class="data row7 col7" >75.513152</td>
<td id="T_b6ba8_row7_col8" class="data row7 col8" >78.526569</td>
<td id="T_b6ba8_row7_col9" class="data row7 col9" >68.415131</td>
<td id="T_b6ba8_row7_col10" class="data row7 col10" >67.814538</td>
<td id="T_b6ba8_row7_col11" class="data row7 col11" >66.069047</td>
<td id="T_b6ba8_row7_col12" class="data row7 col12" >60.649071</td>
<td id="T_b6ba8_row7_col13" class="data row7 col13" >70.595242</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row8" class="row_heading level0 row8" >Music Understanding</th>
<td id="T_b6ba8_row8_col0" class="data row8 col0" >63.942713</td>
<td id="T_b6ba8_row8_col1" class="data row8 col1" >51.347936</td>
<td id="T_b6ba8_row8_col2" class="data row8 col2" >60.657119</td>
<td id="T_b6ba8_row8_col3" class="data row8 col3" >55.602359</td>
<td id="T_b6ba8_row8_col4" class="data row8 col4" >63.689975</td>
<td id="T_b6ba8_row8_col5" class="data row8 col5" >71.609099</td>
<td id="T_b6ba8_row8_col6" class="data row8 col6" >59.309183</td>
<td id="T_b6ba8_row8_col7" class="data row8 col7" >55.265375</td>
<td id="T_b6ba8_row8_col8" class="data row8 col8" >56.697557</td>
<td id="T_b6ba8_row8_col9" class="data row8 col9" >47.598989</td>
<td id="T_b6ba8_row8_col10" class="data row8 col10" >50.463353</td>
<td id="T_b6ba8_row8_col11" class="data row8 col11" >59.056445</td>
<td id="T_b6ba8_row8_col12" class="data row8 col12" >49.705139</td>
<td id="T_b6ba8_row8_col13" class="data row8 col13" >44.313395</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row9" class="row_heading level0 row9" >Accent Recognition</th>
<td id="T_b6ba8_row9_col0" class="data row9 col0" >41.815396</td>
<td id="T_b6ba8_row9_col1" class="data row9 col1" >43.799799</td>
<td id="T_b6ba8_row9_col2" class="data row9 col2" >47.788864</td>
<td id="T_b6ba8_row9_col3" class="data row9 col3" >60.054981</td>
<td id="T_b6ba8_row9_col4" class="data row9 col4" >10.143836</td>
<td id="T_b6ba8_row9_col5" class="data row9 col5" >10.901397</td>
<td id="T_b6ba8_row9_col6" class="data row9 col6" >0.478694</td>
<td id="T_b6ba8_row9_col7" class="data row9 col7" >3.097615</td>
<td id="T_b6ba8_row9_col8" class="data row9 col8" >21.398482</td>
<td id="T_b6ba8_row9_col9" class="data row9 col9" >0.587293</td>
<td id="T_b6ba8_row9_col10" class="data row9 col10" >25.929693</td>
<td id="T_b6ba8_row9_col11" class="data row9 col11" >17.550294</td>
<td id="T_b6ba8_row9_col12" class="data row9 col12" >11.577381</td>
<td id="T_b6ba8_row9_col13" class="data row9 col13" >14.294613</td>
</tr>
<tr>
<th id="T_b6ba8_level0_row10" class="row_heading level0 row10" >Speech Translation</th>
<td id="T_b6ba8_row10_col0" class="data row10 col0" >27.391115</td>
<td id="T_b6ba8_row10_col1" class="data row10 col1" >27.086366</td>
<td id="T_b6ba8_row10_col2" class="data row10 col2" >28.540359</td>
<td id="T_b6ba8_row10_col3" class="data row10 col3" >22.130258</td>
<td id="T_b6ba8_row10_col4" class="data row10 col4" >21.143215</td>
<td id="T_b6ba8_row10_col5" class="data row10 col5" >10.826666</td>
<td id="T_b6ba8_row10_col6" class="data row10 col6" >21.776628</td>
<td id="T_b6ba8_row10_col7" class="data row10 col7" >13.827110</td>
<td id="T_b6ba8_row10_col8" class="data row10 col8" >13.536272</td>
<td id="T_b6ba8_row10_col9" class="data row10 col9" >20.688241</td>
<td id="T_b6ba8_row10_col10" class="data row10 col10" >21.437997</td>
<td id="T_b6ba8_row10_col11" class="data row10 col11" >4.973184</td>
<td id="T_b6ba8_row10_col12" class="data row10 col12" >13.486003</td>
<td id="T_b6ba8_row10_col13" class="data row10 col13" >9.046791</td>
</tr>
</tbody>
</table>
## How to Use
> [!WARNING]
> **Out of Scope use**: This model is not intended for use in tool calling, math, and coding tasks.
MERaLiON-2 requires `transformers` version `4.50.1`
```
pip install transformers==4.50.1
pip install librosa
```
To run in GPU, MERaLiON-2 requires `flash-attn`.
```
pip install flash-attn --no-build-isolation
```
> [!TIP]
> Should you face any difficulties installing the above packages, you can try installing within this Docker container instead:
> `pytorch/pytorch:2.5.1-cuda12.1-cudnn9-devel`, whose cuda and torch environments have been tested working.
### Audio Input
- For ASR tasks, the maximum audio length is suggested to be 30 seconds at 16,000 Hz.
- For general speech & audio understanding tasks, the maximum audio length is suggested to be 300 seconds at 16,000 Hz sampling rate.
### Text Prompt
MERaLiON-2 is trained with this prompt template:
```
Instruction: <TextHere> \nFollow the text instruction based on the following audio: <SpeechHere>
```
It is generally recommended to follow this template, i.e., replace `<TextHere>` with your text instruction while leaving the `<SpeechHere>` untouched. We list a few useful example prompts here:
**Standard prompts for better accuracy**
```python
prompt_template = "Instruction: {query} \nFollow the text instruction based on the following audio: <SpeechHere>"
transcription_prompt = prompt_template.format(query="Please transcribe the speech")
translation_prompt = prompt_template.format(query="Please translate the speech into xxx")
```
> [!WARNING]
> Other prompts might not perform well on MERaLiON-2-10B-ASR.
### Huggingface Inference with CPU
```python
import librosa
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
repo_id = "MERaLiON/MERaLiON-2-10B-ASR"
processor = AutoProcessor.from_pretrained(
repo_id,
trust_remote_code=True,
)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
repo_id,
use_safetensors=True,
trust_remote_code=True,
)
prompt_template = "Instruction: {query} \nFollow the text instruction based on the following audio: <SpeechHere>"
transcribe_prompt = "Please transcribe this speech."
translate_prompt = "Can you please translate this speech into written Chinese?"
# batch inference of 2 samples
conversation = [
[{"role": "user", "content": prompt_template.format(query=transcribe_prompt)}],
[{"role": "user", "content": prompt_template.format(query=translate_prompt)}],
]
chat_prompt = processor.tokenizer.apply_chat_template(
conversation=conversation,
tokenize=False,
add_generation_prompt=True
)
# Use audio at 16000hz.
audio_array, sample_rate = librosa.load("/path/to/your/audio/file", sr=16000)
audio_array = [audio_array]*2
inputs = processor(text=chat_prompt, audios=audio_array)
# adjust the `max_new_tokens` based on your use case.
outputs = model.generate(**inputs, max_new_tokens=256)
generated_ids = outputs[:, inputs['input_ids'].size(1):]
response = processor.batch_decode(generated_ids, skip_special_tokens=True)
```
### Huggingface GPU Inference
```python
import torch
import librosa
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
repo_id = "MERaLiON/MERaLiON-2-10B-ASR"
device = "cuda"
processor = AutoProcessor.from_pretrained(
repo_id,
trust_remote_code=True,
)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
repo_id,
use_safetensors=True,
trust_remote_code=True,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
).to(device)
prompt_template = "Instruction: {query} \nFollow the text instruction based on the following audio: <SpeechHere>"
transcribe_prompt = "Please transcribe this speech."
translate_prompt = "Can you please translate this speech into written Chinese?"
# batch inference of 2 samples
conversation = [
[{"role": "user", "content": prompt_template.format(query=transcribe_prompt)}],
[{"role": "user", "content": prompt_template.format(query=translate_prompt)}],
]
chat_prompt = processor.tokenizer.apply_chat_template(
conversation=conversation,
tokenize=False,
add_generation_prompt=True
)
# Use audio at 16000hz.
audio_array, sample_rate = librosa.load("/path/to/your/audio/file", sr=16000)
audio_array = [audio_array]*2
inputs = processor(text=chat_prompt, audios=audio_array)
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
inputs[key] = inputs[key].to(device)
if value.dtype == torch.float32:
inputs[key] = inputs[key].to(torch.bfloat16)
# adjust the `max_new_tokens` based on your use case.
outputs = model.generate(**inputs, max_new_tokens=256)
generated_ids = outputs[:, inputs['input_ids'].size(1):]
response = processor.batch_decode(generated_ids, skip_special_tokens=True)
```
## ⚠️ Disclaimer
The current MERaLiON-2 has not been specifically aligned for safety and may generate content that is inappropriate, offensive, or harmful. Developers and users are responsible for performing their own safety fine-tuning and implementing necessary security measures. The authors shall not be held liable for any claims, damages, or other liabilities arising from the use of the released models, weights, or code.
### Compute and Infrastructure
MERaLiON-2 was trained on the [**ASPIRE 2A+**](https://help.nscc.sg/aspire2aplus/about/) Supercomputer Cluster, provided by [**National Supercomputing Centre (NSCC)**](https://www.nscc.sg/), Singapore. ASPIRE 2A+ cluster provides multiple H100 nodes, with each compute node equipped with 8 Nvidia H100 GPUs, 2 TB of RAM, and 30 TB of locally attached NVMe storage. These nodes are interconnected via a rail-optimised, full fat-tree topology, utilising 400 Gb/s NDR InfiniBand cables. Additionally, the cluster incorporates a 2.5 PB SSD-based Lustre file system, linked to the H100 nodes through high-speed InfiniBand connections.
With a global batch size of 768, we trained the current release of MERaLiON-2 for around 200k steps, which took around 2 days to complete using 16 nodes, 128 H100 GPUs.
## 📚 Citation
If you find our work useful, please cite our papers:
[MERaLiON-AudioLLM: Bridging Audio and Language with Large Language Models](https://arxiv.org/abs/2412.09818) <br>
[AudioBench: A Universal Benchmark for Audio Large Language Models](https://aclanthology.org/2025.naacl-long.218/) <br>
[Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models](https://arxiv.org/abs/2501.01034) <br>
[MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders](https://arxiv.org/abs/2409.06635) <br>
```
@misc{he2024meralionaudiollmtechnicalreport,
title={MERaLiON-AudioLLM: Bridging Audio and Language with Large Language Models},
author={{MERaLiON Team}},
year={2024},
eprint={2412.09818},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.09818},
}
```
```
@article{wang2024audiobench,
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
journal={NAACL},
year={2025}
}
```
```
@article{wang2025advancing,
title={Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models},
author={Wang, Bin and Zou, Xunlong and Sun, Shuo and Zhang, Wenyu and He, Yingxu and Liu, Zhuohan and Wei, Chengwei and Chen, Nancy F and Aw, AiTi},
journal={arXiv preprint arXiv:2501.01034},
year={2025}
}
```
```
@article{zhang2024mowe,
title={MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders},
author={Zhang, Wenyu and Sun, Shuo and Wang, Bin and Zou, Xunlong and Liu, Zhuohan and He, Yingxu and Lin, Geyu and Chen, Nancy F and Aw, Ai Ti},
journal={ICASSP},
year={2025}
}
``` |