File size: 12,367 Bytes
1a27370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# %%
import os
import pandas as pd
import numpy as np
import evaluate
from transformers import AutoTokenizer, T5ForConditionalGeneration, Seq2SeqTrainer, Seq2SeqTrainingArguments
from dataclasses import dataclass
from typing import Union, Dict, List

import pandas as pd
import numpy as np
from datasets import Dataset
import argparse
import torch
import evaluate

import os
from dataclasses import dataclass
from typing import Union, Dict, List, Optional
from transformers import AdamW, AutoTokenizer, T5ForConditionalGeneration, T5Config
from transformers import (
    DataCollator,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)

os.environ["WANDB_DISABLED"] = "true"

# %%
set_seed(41)

# %%
def prepare_dataset(batch):

    batch['input_ids'] = batch['Grapheme']
    batch['labels'] = batch['Mapped Phoneme']

    return batch

# %%
# Data collator for padding
@dataclass
class DataCollatorWithPadding:
    tokenizer: AutoTokenizer
    padding: Union[bool, str] = True

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        words = [feature["input_ids"] for feature in features]
        prons = [feature["labels"] for feature in features]
        batch = self.tokenizer(words, padding=self.padding, add_special_tokens=False, return_attention_mask=True, return_tensors='pt')
        pron_batch = self.tokenizer(prons, padding=self.padding, add_special_tokens=True, return_attention_mask=True, return_tensors='pt')
        batch['labels'] = pron_batch['input_ids'].masked_fill(pron_batch.attention_mask.ne(1), -100)
        return batch

# %%
# Compute metrics (CER and WER)
def compute_metrics(pred):
    labels_ids = pred.label_ids
    pred_ids = pred.predictions
    pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
    labels_ids[labels_ids == -100] = tokenizer.pad_token_id
    label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
    cer = cer_metric.compute(predictions=pred_str, references=label_str)
    wer = wer_metric.compute(predictions=pred_str, references=label_str)
    return {"cer": cer, 'wer': wer}

# setting the evaluation metrics
cer_metric = evaluate.load("cer")
wer_metric = evaluate.load('wer')

# %% [markdown]
# # Phase 1

# %%
def load_pronuncation_dictionary(path, train=True, homograph_only=False, human=False) -> Dataset:
    # path = 'PersianG2P_final.csv'

    # Read the CSV file
    df = pd.read_csv(path, index_col=[0])

    if homograph_only:
        if human:
            df = df[df['Source'] == 'human']
        if not human:
            df = df[df['Source'] != 'human']

    # Drop unnecessary columns
    df = df.drop(['Source', 'Source ID'], axis=1)

    # Drop rows where 'Phoneme' is NaN
    df = df.dropna(subset=['Mapped Phoneme'])

    # Filter rows based on phoneme length
    Plen = np.array([len(i) for i in df['Mapped Phoneme']])
    df = df.iloc[Plen < 512, :]

    # Filter rows based on 'Homograph Grapheme' column
    if homograph_only:
        df = df[df['Homograph Grapheme'].notna() & (df['Homograph Grapheme'] != '')]
    else:
        df = df[df['Homograph Grapheme'].isna() | (df['Homograph Grapheme'] == '')]

    # Shuffle the DataFrame
    df = df.sample(frac=1)

    # Split into train and test sets
    if train:
        return Dataset.from_pandas(df.iloc[:len(df)-90, :])
    else:
        return Dataset.from_pandas(df.iloc[len(df)-90:, :])

# %%
# Load datasets (only rows with 'Homograph Grapheme')
train_data = load_pronuncation_dictionary('PersianG2P_final.csv', train=True)
train_data = train_data.map(prepare_dataset)
train_dataset = train_data

dev_data = load_pronuncation_dictionary('PersianG2P_final.csv', train=False)
dev_data = dev_data.map(prepare_dataset)
dev_dataset = dev_data

# # Load tokenizer and model from checkpoint
# checkpoint_path = "checkpoint-320"  # Path to your checkpoint
# tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
# model = T5ForConditionalGeneration.from_pretrained(checkpoint_path)
# # Load tokenizer and model from checkpoint
# checkpoint_path = "checkpoint-320"  # Path to your checkpoint
tokenizer = AutoTokenizer.from_pretrained('google/byt5-small')
# model = T5ForConditionalGeneration.from_pretrained(checkpoint_path)

config = T5Config.from_pretrained('google/byt5-small')

config.num_decoder_layers = 2
config.num_layers = 2
config.d_kv = 64
config.d_model = 512
config.d_ff = 512

print('Initializing a ByT5 model...')
model = T5ForConditionalGeneration(config)


# Data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

# Training arguments (default values)
training_args = Seq2SeqTrainingArguments(
    output_dir="./phase1-t5",  # Directory to save the fine-tuned model
    predict_with_generate=True,
    generation_num_beams=5,
    generation_max_length=512,
    evaluation_strategy="steps",
    per_device_train_batch_size=32,  # Default batch size
    per_device_eval_batch_size=100,  # Default batch size
    num_train_epochs=5,  # Fewer epochs for this step
    learning_rate=5e-4,  # Default learning rate
    warmup_steps=1000,  # Default warmup steps
    logging_steps=1000,  # Default logging steps
    save_steps=4000,  # Default save steps
    eval_steps=1000,  # Default evaluation steps
    save_total_limit=2,  # Keep only the last 2 checkpoints
    load_best_model_at_end=True,  # Load the best model at the end of training
    fp16=False,  # Disable FP16 by default
    remove_unused_columns=False,
)

# Trainer
trainer = Seq2SeqTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    compute_metrics=compute_metrics,
    train_dataset=train_dataset,
    eval_dataset=dev_dataset,
    data_collator=data_collator,
)

# Fine-tune the model
trainer.train()

# Save the fine-tuned model
trainer.save_model("./phase1-t5")

# %%
import matplotlib.pyplot as plt

# Extract training and validation loss from the log history
train_loss = []
val_loss = []
for log in trainer.state.log_history:
    if "loss" in log:
        train_loss.append(log["loss"])
    if "eval_loss" in log:
        val_loss.append(log["eval_loss"])

# Plot the training and validation loss
plt.figure(figsize=(10, 6))
plt.plot(train_loss, label="Training Loss", marker="o")
plt.plot(val_loss, label="Validation Loss", marker="o")
plt.xlabel("Steps")
plt.ylabel("Loss")
plt.title("Training and Validation Loss")
plt.legend()
plt.grid()

# Save the plot to disk
plt.savefig("phase1-t5.png")

# Optionally, close the plot to free up memory
plt.close()

# %% [markdown]
# # Phase 2

# %%
# Load datasets (only rows with 'Homograph Grapheme')
train_data = load_pronuncation_dictionary('PersianG2P_final.csv',
                                          train=True,
                                          homograph_only=True)
train_data = train_data.map(prepare_dataset)
train_dataset = train_data

dev_data = load_pronuncation_dictionary('PersianG2P_final.csv',
                                        train=False,
                                        homograph_only=True)
dev_data = dev_data.map(prepare_dataset)
dev_dataset = dev_data

# Load tokenizer and model from the previous fine-tuning step
checkpoint_path = "./phase1-t5"  # Path to the model from Step 1
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
model = T5ForConditionalGeneration.from_pretrained(checkpoint_path)

# Data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

# Training arguments (default values)
training_args = Seq2SeqTrainingArguments(
    output_dir="./phase2-t5",  # Directory to save the final fine-tuned model
    predict_with_generate=True,
    generation_num_beams=5,
    generation_max_length=512,
    evaluation_strategy="steps",
    per_device_train_batch_size=32,  # Default batch size
    per_device_eval_batch_size=100,  # Default batch size
    num_train_epochs=30,  # More epochs for this step
    learning_rate=5e-4,  # Lower learning rate for fine-tuning
    warmup_steps=1000,  # Default warmup steps
    logging_steps=1000,  # Default logging steps
    save_steps=4000,  # Default save steps
    eval_steps=1000,  # Default evaluation steps
    save_total_limit=2,  # Keep only the last 2 checkpoints
    load_best_model_at_end=True,  # Load the best model at the end of training
    fp16=False,  # Disable FP16 by default
)

# Trainer
trainer = Seq2SeqTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    compute_metrics=compute_metrics,
    train_dataset=train_dataset,
    eval_dataset=dev_dataset,
    data_collator=data_collator,
)

# Fine-tune the model
trainer.train()

# Save the fine-tuned model
trainer.save_model("./phase2-t5")


# %%
import matplotlib.pyplot as plt

# Extract training and validation loss from the log history
train_loss = []
val_loss = []
for log in trainer.state.log_history:
    if "loss" in log:
        train_loss.append(log["loss"])
    if "eval_loss" in log:
        val_loss.append(log["eval_loss"])

# Plot the training and validation loss
plt.figure(figsize=(10, 6))
plt.plot(train_loss, label="Training Loss", marker="o")
plt.plot(val_loss, label="Validation Loss", marker="o")
plt.xlabel("Steps")
plt.ylabel("Loss")
plt.title("Training and Validation Loss")
plt.legend()
plt.grid()

# Save the plot to disk
plt.savefig("phase2-t5.png")

# Optionally, close the plot to free up memory
plt.close()

# %% [markdown]
# # Phase 3

# %%
# Load datasets (only rows with 'Homograph Grapheme')
train_data = load_pronuncation_dictionary('PersianG2P_final_augmented_final.csv',
                                          train=True,
                                          homograph_only=True,
                                          human=True)
train_data = train_data.map(prepare_dataset)
train_dataset = train_data

dev_data = load_pronuncation_dictionary('PersianG2P_final_augmented_final.csv',
                                        train=False,
                                        homograph_only=True,
                                        human=True)
dev_data = dev_data.map(prepare_dataset)
dev_dataset = dev_data

# Load tokenizer and model from the previous fine-tuning step
checkpoint_path = "./phase2-t5"  # Path to the model from Step 1
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
model = T5ForConditionalGeneration.from_pretrained(checkpoint_path)

# Data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

# Training arguments (default values)
training_args = Seq2SeqTrainingArguments(
    output_dir="./phase3-t5",  # Directory to save the final fine-tuned model
    predict_with_generate=True,
    generation_num_beams=5,
    generation_max_length=512,
    evaluation_strategy="steps",
    per_device_train_batch_size=32,  # Default batch size
    per_device_eval_batch_size=100,  # Default batch size
    num_train_epochs=50,  # More epochs for this step
    learning_rate=5e-4,  # Lower learning rate for fine-tuning
    warmup_steps=1000,  # Default warmup steps
    logging_steps=1000,  # Default logging steps
    save_steps=4000,  # Default save steps
    eval_steps=1000,  # Default evaluation steps
    save_total_limit=2,  # Keep only the last 2 checkpoints
    load_best_model_at_end=True,  # Load the best model at the end of training
    fp16=False,  # Disable FP16 by default
)

# Trainer
trainer = Seq2SeqTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    compute_metrics=compute_metrics,
    train_dataset=train_dataset,
    eval_dataset=dev_dataset,
    data_collator=data_collator,
)

# Fine-tune the model
trainer.train()

# Save the fine-tuned model
trainer.save_model("./phase3-t5")


# %%
import matplotlib.pyplot as plt

# Extract training and validation loss from the log history
train_loss = []
val_loss = []
for log in trainer.state.log_history:
    if "loss" in log:
        train_loss.append(log["loss"])
    if "eval_loss" in log:
        val_loss.append(log["eval_loss"])

# Plot the training and validation loss
plt.figure(figsize=(10, 6))
plt.plot(train_loss, label="Training Loss", marker="o")
plt.plot(val_loss, label="Validation Loss", marker="o")
plt.xlabel("Steps")
plt.ylabel("Loss")
plt.title("Training and Validation Loss")
plt.legend()
plt.grid()

# Save the plot to disk
plt.savefig("phase3-t5.png")

# Optionally, close the plot to free up memory
plt.close()