Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .gitignore +4 -0
- README.md +78 -3
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- apply.py +50 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.psd filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.idea/
|
3 |
+
|
4 |
+
|
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- Food
|
10 |
+
- nutrient prediction
|
11 |
+
- healthy diet
|
12 |
+
- Food NEL
|
13 |
+
- Food NER
|
14 |
+
---
|
15 |
+
# 'FoodyLLM: A FAIR-aligned specialized large language model for food and nutrition analysis'
|
16 |
+
|
17 |
+
## The model is based on Meta-Llama-3-8B-Instruct, which was fine-tuned (using LoRA) for food and nutrition analysis.
|
18 |
+
|
19 |
+
More specifically, it can conduct the following tasks:
|
20 |
+
- Assessing recipe nutritional profiles
|
21 |
+
- Classifying recipes by traffic light nutrition labels (see https://www.food.gov.uk/safety-hygiene/check-the-label for details on the labeling)
|
22 |
+
- Extract food named entities from text (Food NER)
|
23 |
+
- Link the food entities to three distinct ontologies, Hansard taxonomy, FoodOn and SNOMED-CT (Food NEL)
|
24 |
+
|
25 |
+
## How to use it: ##
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
29 |
+
import torch
|
30 |
+
|
31 |
+
if __name__ == '__main__':
|
32 |
+
base_model = "meta-llama/Meta-Llama-3-8B-Instruct"
|
33 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
34 |
+
|
35 |
+
bnb_config = BitsAndBytesConfig(
|
36 |
+
load_in_4bit=True,
|
37 |
+
bnb_4bit_quant_type="nf4",
|
38 |
+
bnb_4bit_compute_dtype=torch.float16,
|
39 |
+
bnb_4bit_use_double_quant=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
base_model,
|
44 |
+
quantization_config=bnb_config,
|
45 |
+
device_map={"": 0},
|
46 |
+
attn_implementation="eager"
|
47 |
+
)
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
50 |
+
tokenizer.pad_token = '<|pad|>'
|
51 |
+
tokenizer.pad_token_id = 128255
|
52 |
+
|
53 |
+
#Load LORA weights
|
54 |
+
model.load_adapter("Matej/FoodyLLM")
|
55 |
+
model.config.use_cache = True
|
56 |
+
model.eval()
|
57 |
+
|
58 |
+
system_prompt = ""
|
59 |
+
user_prompt = "Calculate the nutrient values per 100 grams in a recipe with these ingredients: 10 ounce candies, marshmallows, 1/4 cup butter, without salt, 6 cup cocoa, dry powder, unsweetened"
|
60 |
+
|
61 |
+
messages = [
|
62 |
+
{
|
63 |
+
"role": "user",
|
64 |
+
"content": f"{system_prompt} {user_prompt}".strip()
|
65 |
+
}
|
66 |
+
]
|
67 |
+
|
68 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
69 |
+
|
70 |
+
#Here we have a batch of one
|
71 |
+
tokenizer_input = [prompt]
|
72 |
+
|
73 |
+
inputs = tokenizer(tokenizer_input, return_tensors="pt", padding=True, truncation=True, max_length=1024).to(device)
|
74 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024, do_sample=True)
|
75 |
+
answers = tokenizer.batch_decode(generated_ids[:, inputs['input_ids'].shape[1]:])
|
76 |
+
answers = [x.split('<|eot_id|>')[0].strip() for x in answers]
|
77 |
+
print(answers)
|
78 |
+
```
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Meta-Llama-3-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"up_proj",
|
24 |
+
"down_proj",
|
25 |
+
"q_proj",
|
26 |
+
"o_proj",
|
27 |
+
"v_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"k_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cee014ffbf0e4595d8773716cdc3693d5e3ed05033d64b52687d09cf4e93b4af
|
3 |
+
size 167832240
|
apply.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
2 |
+
import torch
|
3 |
+
|
4 |
+
if __name__ == '__main__':
|
5 |
+
base_model = "meta-llama/Meta-Llama-3-8B-Instruct"
|
6 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
+
|
8 |
+
bnb_config = BitsAndBytesConfig(
|
9 |
+
load_in_4bit=True,
|
10 |
+
bnb_4bit_quant_type="nf4",
|
11 |
+
bnb_4bit_compute_dtype=torch.float16,
|
12 |
+
bnb_4bit_use_double_quant=True,
|
13 |
+
)
|
14 |
+
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model,
|
17 |
+
quantization_config=bnb_config,
|
18 |
+
device_map={"": 0},
|
19 |
+
attn_implementation="eager"
|
20 |
+
)
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
23 |
+
tokenizer.pad_token = '<|pad|>'
|
24 |
+
tokenizer.pad_token_id = 128255
|
25 |
+
|
26 |
+
#Load LORA weights
|
27 |
+
model.load_adapter("Matej/FoodyLLM")
|
28 |
+
model.config.use_cache = True
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
system_prompt = ""
|
32 |
+
user_prompt = "Calculate the nutrient values per 100 grams in a recipe with these ingredients: 10 ounce candies, marshmallows, 1/4 cup butter, without salt, 6 cup cocoa, dry powder, unsweetened"
|
33 |
+
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": f"{system_prompt} {user_prompt}".strip()
|
38 |
+
}
|
39 |
+
]
|
40 |
+
|
41 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
42 |
+
|
43 |
+
#Here we have a batch of one
|
44 |
+
tokenizer_input = [prompt]
|
45 |
+
|
46 |
+
inputs = tokenizer(tokenizer_input, return_tensors="pt", padding=True, truncation=True, max_length=1024).to(device)
|
47 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024, do_sample=True)
|
48 |
+
answers = tokenizer.batch_decode(generated_ids[:, inputs['input_ids'].shape[1]:])
|
49 |
+
answers = [x.split('<|eot_id|>')[0].strip() for x in answers]
|
50 |
+
print(answers)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
peft
|