README.md and .gitattributes after training
Browse files
README.md
CHANGED
|
@@ -21,61 +21,19 @@ It achieves the following results on the evaluation set:
|
|
| 21 |
- Loss: 0.1385
|
| 22 |
- Accuracy: 0.9962
|
| 23 |
|
| 24 |
-
|
| 25 |
-
with the labels *down* and *on*.
|
| 26 |
-
Superb ks is in turn derived from (Speech Commands dataset v1.0)[https://www.tensorflow.org/datasets/catalog/speech_commands].
|
| 27 |
-
Train/validation/test splits are as in superb ks.
|
| 28 |
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
## Training procedure
|
| 36 |
-
Training used 'sbatch' on a cluster and the program [run_audio_classification.py](https://github.com/huggingface/transformers).
|
| 37 |
-
'down_on.sub' is below, start it with 'sbatch down_on.sub'.
|
| 38 |
-
|
| 39 |
-
'''
|
| 40 |
-
#!/bin/bash
|
| 41 |
-
#SBATCH -J down_on # Job name
|
| 42 |
-
#SBATCH -o down_on_%j.out # Name of stdout output log file (%j expands to jobID)
|
| 43 |
-
#SBATCH -e down_on_%j.err # Name of stderr output log file (%j expands to jobID)
|
| 44 |
-
#SBATCH -N 1 # Total number of nodes requested
|
| 45 |
-
#SBATCH -n 1 # Total number of cores requested
|
| 46 |
-
#SBATCH --mem=5000 # Total amount of (real) memory requested (per node)
|
| 47 |
-
#SBATCH -t 10:00:00 # Time limit (hh:mm:ss)
|
| 48 |
-
#SBATCH --partition=gpu # Request partition for resource allocation
|
| 49 |
-
#SBATCH --gres=gpu:1 # Specify a list of generic consumable resources (per node)
|
| 50 |
-
|
| 51 |
-
cd ~/ac_h
|
| 52 |
-
/home/mr249/env/hugh/bin/python run_audio_classification.py \
|
| 53 |
-
--model_name_or_path facebook/wav2vec2-base \
|
| 54 |
-
--dataset_name MatsRooth/down_on \
|
| 55 |
-
--output_dir wav2vec2-base_down_on \
|
| 56 |
-
--overwrite_output_dir \
|
| 57 |
-
--remove_unused_columns False \
|
| 58 |
-
--do_train \
|
| 59 |
-
--do_eval \
|
| 60 |
-
--fp16 \
|
| 61 |
-
--learning_rate 3e-5 \
|
| 62 |
-
--max_length_seconds 1 \
|
| 63 |
-
--attention_mask False \
|
| 64 |
-
--warmup_ratio 0.1 \
|
| 65 |
-
--num_train_epochs 5 \
|
| 66 |
-
--per_device_train_batch_size 32 \
|
| 67 |
-
--gradient_accumulation_steps 4 \
|
| 68 |
-
--per_device_eval_batch_size 32 \
|
| 69 |
-
--dataloader_num_workers 1 \
|
| 70 |
-
--logging_strategy steps \
|
| 71 |
-
--logging_steps 10 \
|
| 72 |
-
--evaluation_strategy epoch \
|
| 73 |
-
--save_strategy epoch \
|
| 74 |
-
--load_best_model_at_end True \
|
| 75 |
-
--metric_for_best_model accuracy \
|
| 76 |
-
--save_total_limit 3 \
|
| 77 |
-
--seed 0
|
| 78 |
-
'''
|
| 79 |
|
| 80 |
### Training hyperparameters
|
| 81 |
|
|
@@ -96,10 +54,10 @@ The following hyperparameters were used during training:
|
|
| 96 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 97 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 98 |
| 0.6089 | 1.0 | 29 | 0.1385 | 0.9962 |
|
| 99 |
-
| 0.
|
| 100 |
-
| 0.0835 | 3.0 | 87 | 0.
|
| 101 |
-
| 0.
|
| 102 |
-
| 0.
|
| 103 |
|
| 104 |
|
| 105 |
### Framework versions
|
|
|
|
| 21 |
- Loss: 0.1385
|
| 22 |
- Accuracy: 0.9962
|
| 23 |
|
| 24 |
+
## Model description
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
More information needed
|
| 27 |
|
| 28 |
+
## Intended uses & limitations
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Training and evaluation data
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
|
| 36 |
## Training procedure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
### Training hyperparameters
|
| 39 |
|
|
|
|
| 54 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 55 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 56 |
| 0.6089 | 1.0 | 29 | 0.1385 | 0.9962 |
|
| 57 |
+
| 0.1289 | 2.0 | 58 | 0.0510 | 0.9962 |
|
| 58 |
+
| 0.0835 | 3.0 | 87 | 0.0433 | 0.9885 |
|
| 59 |
+
| 0.0605 | 4.0 | 116 | 0.0330 | 0.9923 |
|
| 60 |
+
| 0.0479 | 5.0 | 145 | 0.0273 | 0.9904 |
|
| 61 |
|
| 62 |
|
| 63 |
### Framework versions
|