Update README.md
Browse files
README.md
CHANGED
@@ -15,6 +15,8 @@ tags:
|
|
15 |
model-index:
|
16 |
- name: ModernBERT-base-subjectivity-english
|
17 |
results: []
|
|
|
|
|
18 |
---
|
19 |
|
20 |
# ModernBERT-base-subjectivity-english
|
@@ -52,28 +54,22 @@ The `ModernBERT-base-subjectivity-english` model was fine-tuned on the English p
|
|
52 |
You can use this model directly with the `transformers` library for text classification:
|
53 |
|
54 |
```python
|
55 |
-
from transformers import
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
model
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
predicted_class_id = logits.argmax().item()
|
72 |
-
labels = model.config.id2label # Access the label mapping from model config
|
73 |
-
predicted_label = labels[predicted_class_id]
|
74 |
-
|
75 |
-
print(f"Text: '{text}'")
|
76 |
-
print(f"Predicted label: {predicted_label}")
|
77 |
```
|
78 |
|
79 |
## Training procedure
|
@@ -106,4 +102,25 @@ The following hyperparameters were used during training:
|
|
106 |
- Transformers 4.49.0
|
107 |
- Pytorch 2.5.1+cu121
|
108 |
- Datasets 3.3.1
|
109 |
-
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
model-index:
|
16 |
- name: ModernBERT-base-subjectivity-english
|
17 |
results: []
|
18 |
+
datasets:
|
19 |
+
- MatteoFasulo/clef2025_checkthat_task1_subjectivity
|
20 |
---
|
21 |
|
22 |
# ModernBERT-base-subjectivity-english
|
|
|
54 |
You can use this model directly with the `transformers` library for text classification:
|
55 |
|
56 |
```python
|
57 |
+
from transformers import pipeline
|
58 |
+
|
59 |
+
# Load the text classification pipeline
|
60 |
+
classifier = pipeline(
|
61 |
+
"text-classification",
|
62 |
+
model="MatteoFasulo/ModernBERT-base-subjectivity-english",
|
63 |
+
tokenizer="answerdotai/ModernBERT-base",
|
64 |
+
)
|
65 |
+
|
66 |
+
text1 = "The company reported a 10% increase in profits in the last quarter."
|
67 |
+
result1 = classifier(text1)
|
68 |
+
print(f"Text: '{text1}' Classification: {result1}")
|
69 |
+
|
70 |
+
text2 = "This product is absolutely amazing and everyone should try it!"
|
71 |
+
result2 = classifier(text2)
|
72 |
+
print(f"Text: '{text2}' Classification: {result2}")
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
```
|
74 |
|
75 |
## Training procedure
|
|
|
102 |
- Transformers 4.49.0
|
103 |
- Pytorch 2.5.1+cu121
|
104 |
- Datasets 3.3.1
|
105 |
+
- Tokenizers 0.21.0
|
106 |
+
|
107 |
+
## Code
|
108 |
+
|
109 |
+
The official code and materials for this submission are available on GitHub:
|
110 |
+
[https://github.com/MatteoFasulo/clef2025-checkthat](https://github.com/MatteoFasulo/clef2025-checkthat)
|
111 |
+
|
112 |
+
## Citation
|
113 |
+
|
114 |
+
If you find our work helpful or inspiring, please feel free to cite it:
|
115 |
+
|
116 |
+
```bibtex
|
117 |
+
@misc{fasulo2025aiwizardscheckthat2025,
|
118 |
+
title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
|
119 |
+
author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
|
120 |
+
year={2025},
|
121 |
+
eprint={2507.11764},
|
122 |
+
archivePrefix={arXiv},
|
123 |
+
primaryClass={cs.CL},
|
124 |
+
url={https://arxiv.org/abs/2507.11764},
|
125 |
+
}
|
126 |
+
```
|